Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Small ; : e2402793, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757420

ABSTRACT

Developing a new end group for synthesizing asymmetric small molecule acceptors (SMAs) is crucial for achieving high-performance organic photovoltaics (OPVs). Herein, an asymmetric small molecule acceptor, BTP-BO-4FO, featuring a new difluoro-methoxylated end-group is reported. Compared to its symmetric counterpart L8-BO, BTP-BO-4FO exhibits an upshifted energy level, larger dipole moment, and more sequential crystallinity. By adopting two representative and widely available solvent additives (1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO)), the device based on PM6:BTP-BO-4FO (CN) photovoltaic blend demonstrates a power conversion efficiency (PCE) of 18.62% with an excellent open-circuit voltage (VOC) of 0.933 V, which surpasses the optimal result of L8-BO. The PCE of 18.62% realizes the best efficiencies for binary OPVs based on SMAs with asymmetric end groups. A series of investigations reveal that optimized PM6:BTP-BO-4FO film demonstrates similar molecular packing motif and fibrillar phase distribution as PM6:L8-BO (DIO) does, resulting in comparable recombination dynamics, thus, similar fill factor. Besides, it is found PM6:BTP-BO-4FO possesses more efficient charge generation, which yields better VOC-JSC balance. This study provides a new ending group that enables a cutting-edge efficiency in asymmetric SMA-based OPVs, enriching the material library and shed light on further design ideas.

2.
Genome Biol ; 25(1): 16, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216972

ABSTRACT

BACKGROUND: The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS: Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS: We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.


Subject(s)
Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Cell Cycle Proteins/metabolism , Cell Proliferation , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins/metabolism , RNA-Binding Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Nat Commun ; 14(1): 7464, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016946

ABSTRACT

Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.


Subject(s)
Homeodomain Proteins , Leukemia , Female , Mice , Animals , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Leukemia/genetics , Neoplasm Proteins/metabolism , Up-Regulation , Chromatin , Gene Expression Regulation, Leukemic
4.
Cancer Immunol Res ; 11(12): 1671-1687, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37756564

ABSTRACT

Tumor-specific neoepitopes are promising targets in cancer immunotherapy. However, the identification of functional tumor-specific neoepitopes remains challenging. In addition to the most common source, single-nucleotide variants (SNV), alternative splicing (AS) represents another rich source of neoepitopes and can be utilized in cancers with low SNVs such as uveal melanoma (UM). UM, the most prevalent adult ocular malignancy, has poor clinical outcomes due to a lack of effective therapies. Recent studies have revealed the promise of harnessing tumor neoepitopes to treat UM. Previous studies have focused on neoepitope targets associated with mutations in splicing factor 3b subunit 1 (SF3B1), a key splicing factor; however, little is known about the neoepitopes that are commonly shared by patients independent of SF3B1 status. To identify the AS-derived neoepitopes regardless of SF3B1 status, we herein used a comprehensive nanopore long-read-sequencing approach to elucidate the landscape of AS and novel isoforms in UM. We also performed high-resolution mass spectrometry to further validate the presence of neoepitope candidates and analyzed their structures using the AlphaFold2 algorithm. We experimentally evaluated the antitumor effects of these neoepitopes and found they induced robust immune responses by stimulating interferon (IFN)γ production and activating T cell-based UM tumor killing. These results provide novel insights into UM-specific neoepitopes independent of SF3B1 and lay the foundation for developing therapies by targeting these actionable neoepitopes.


Subject(s)
Melanoma , Uveal Neoplasms , Adult , Humans , Alternative Splicing , Melanoma/genetics , Melanoma/pathology , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , RNA Splicing Factors/genetics , Phosphoproteins/genetics
5.
Cell Death Dis ; 14(8): 531, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37591836

ABSTRACT

Unfolded protein response (UPR) maintains the endoplasmic reticulum (ER) homeostasis, survival, and physiological function of mammalian cells. However, how cells adapt to ER stress under physiological or disease settings remains largely unclear. Here by a genome-wide CRISPR screen, we identified that RBBP8, an endonuclease involved in DNA damage repair, is required for ATF4 activation under ER stress in vitro. RNA-seq analysis suggested that RBBP8 deletion led to impaired cell cycle progression, retarded proliferation, attenuated ATF4 activation, and reduced global protein synthesis under ER stress. Mouse tissue analysis revealed that RBBP8 was highly expressed in the liver, and its expression is responsive to ER stress by tunicamycin intraperitoneal injection. Hepatocytes with RBBP8 inhibition by adenovirus-mediated shRNA were resistant to tunicamycin (Tm)-induced liver damage, cell death, and ER stress response. To study the pathological role of RBBP8 in regulating ATF4 activity, we illustrated that both RBBP8 and ATF4 were highly expressed in liver cancer tissues compared with healthy controls and highly expressed in Ki67-positive proliferating cells within the tumors. Interestingly, overexpression of RBBP8 in vitro promoted ATF4 activation under ER stress, and RBBP8 expression showed a positive correlation with ATF4 expression in liver cancer tissues by co-immunostaining. Our findings provide new insights into the mechanism of how cells adapt to ER stress through the crosstalk between the nucleus and ER and how tumor cells survive under chemotherapy or other anticancer treatments, which suggests potential therapeutic strategies against liver disease by targeting DNA damage repair, UPR or protein synthesis.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Liver Neoplasms , Animals , Mice , Tunicamycin/pharmacology , Unfolded Protein Response , Liver Neoplasms/genetics , Mammals
6.
Blood Adv ; 7(18): 5608-5623, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37522715

ABSTRACT

ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X. Under homeostatic conditions, all HSPC subpopulations are present in the bone marrow (BM) of Etv6R355X/+ mice; however, these animals display shifts in the proportions and/or numbers of progenitor subtypes. To examine whether the Etv6R355X/+ mutation affects HSPC function, we performed serial competitive transplantation and observed that Etv6R355X/+ lineage-sca1+cKit+ (LSK) cells exhibit impaired reconstitution, with near complete failure to repopulate irradiated recipients by the tertiary transplant. Mechanistic studies incorporating cleavage under target and release under nuclease assay, assay for transposase accessible chromatin sequencing, and high-throughput chromosome conformation capture identify ETV6 binding at inflammatory gene loci, including multiple genes within the tumor necrosis factor (TNF) signaling pathway in ETV6-sufficient mouse and human HSPCs. Furthermore, single-cell RNA sequencing of BM cells isolated after transplantation reveals upregulation of inflammatory genes in Etv6R355X/+ progenitors when compared to Etv6+/+ counterparts. Corroborating these findings, Etv6R355X/+ HSPCs produce significantly more TNF than Etv6+/+ cells post-transplantation. We conclude that ETV6 is required to repress inflammatory gene expression in HSPCs under conditions of hematopoietic stress, and this mechanism may be critical to sustain HSPC function.


Subject(s)
Hematopoietic Stem Cells , Thrombocytopenia , Animals , Humans , Mice , Bone Marrow , Bone Marrow Cells/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Thrombocytopenia/metabolism , ETS Translocation Variant 6 Protein
7.
ACS Appl Mater Interfaces ; 15(14): 18252-18261, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010228

ABSTRACT

Flexible solid-state polymer electrolytes (SPEs) enable intimate contact with the electrode and reduce the interfacial impedance for all-solid-state lithium batteries (ASSLBs). However, the low ionic conductivity and poor mechanical strength restrict the development of SPEs. In this work, the chloride superionic conductor Li2ZrCl6 (LZC) is innovatively introduced into the poly(ethylene oxide) (PEO)-based SPE to address these issues since LZC is crucial for improving the ionic conductivity and enhancing the mechanical strength. The as-prepared electrolyte provides a high ionic conductivity of 5.98 × 10-4 S cm-1 at 60 °C and a high Li-ion transference number of 0.44. More importantly, the interaction between LZC and PEO is investigated using FT-IR and Raman spectroscopy, which is conducive to inhibiting the decomposition of PEO and beneficial to the uniform deposition of Li ions. Therefore, a minor polarization voltage of 30 mV is exhibited for the Li||Li cell after cycling for 1000 h. The LiFePO4||Li ASSLB with 1% LZC-added composite electrolyte (CPE-1% LZC) demonstrates excellent cycling performance with a capacity of 145.4 mA h g-1 after 400 cycles at 0.5 C. This work combines the advantages of chloride and polymer electrolytes, exhibiting great potential in the next generation of all-solid-state lithium metal batteries.

8.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036970

ABSTRACT

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Leukemia , Humans , Glycogen Synthase Kinase 3/metabolism , Cell Line, Tumor , Leukemia/drug therapy , Leukemia/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
9.
Mol Cancer Res ; 21(4): 301-306, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36637394

ABSTRACT

Myeloid sarcoma is a rare condition consisting of extramedullary myeloid blasts found in association with acute myeloid leukemia or, in the absence of bone marrow involvement. We identified an infant with isolated myeloid sarcoma whose bone marrow was negative for involvement by flow cytometry. Sequencing revealed the fusion oncogene CIC-NUTM2A and identified the sarcoma to be clonally evolved from the bone marrow, which carried the fusion despite the absence of pathology. Murine modeling confirmed the ability of the fusion to transform hematopoietic cells and identified receptor tyrosine kinase (RTK) signaling activation consistent with disruption of the CIC transcriptional repressor. These findings extend the definition of CIC-rearranged malignancies to include hematologic disease, provide insight into the mechanism of oncogenesis, and demonstrate the importance of molecular analysis and tracking of bone marrow involvement over the course of treatment in myeloid sarcoma, including patients that lack flow cytometric evidence of leukemia at diagnosis. IMPLICATIONS: This study illustrates molecular involvement of phenotypically normal bone marrow in myeloid sarcoma, which has significant implications in clinical care. Further, it extends the definition of CIC-rearrangements to include hematologic malignancies and shows evidence of RTK activation that may be exploited therapeutically in cancer(s) driven by these fusions.


Subject(s)
Leukemia, Myeloid, Acute , Sarcoma, Myeloid , Humans , Animals , Mice , Sarcoma, Myeloid/genetics , Sarcoma, Myeloid/diagnosis , Sarcoma, Myeloid/pathology , Bone Marrow/pathology , Transcription Factors , Leukemia, Myeloid, Acute/pathology , Clone Cells/pathology
10.
Genome Biol ; 24(1): 14, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36698211

ABSTRACT

BACKGROUND: CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF. RESULTS: We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF. CONCLUSIONS: By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.


Subject(s)
Gene Expression Regulation , Indoleacetic Acids , CCCTC-Binding Factor/metabolism , Zinc Fingers , Genome
11.
FEBS J ; 290(2): 321-339, 2023 01.
Article in English | MEDLINE | ID: mdl-34743404

ABSTRACT

Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.


Subject(s)
Homeodomain Proteins , Leukemia, Myeloid, Acute , MicroRNAs , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , MicroRNAs/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Processing, Post-Translational , Transcription Factors/genetics
12.
J Orthop Surg Res ; 17(1): 567, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572886

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic degenerative disease that is one of the main causes of disability in middle-aged and elderly people. Adipose stem cell (ASC)-derived exosomes (ASC-Exo) could repair cartilage damage and treat OA. MiRNA-338-3p expression was confirmed to play a role in inhibiting proinflammatory cytokines. Herein, we aimed to explore the mechanism by which exosomes derived from miR-338-3p overexpressing ASCs protects chondrocytes from interleukin (IL)-1ß-induced chondrocyte change. METHODS: Exosomes were extracted from ASCs transfected with miR-338-3p or its antisense inhibitor. The ASC-Exos (miR-338-3p silencing/overexpression) were incubated with IL-1ß-induced ATDC5 cells, followed by evaluation of the chondrocyte proliferation, degradation, and inflammation injury. RESULTS: In vitro results revealed that ASC-Exos inhibited the expression of prostaglandin E2 (PGE2), IL-6, IL-1ß, and TNF-α, as well as promoted the proliferation of ATDC5 cells. Moreover, ASC-Exos inhibited inflammation injury and degradation of ATDC5 cells by transferring miR-338-3p. Luciferase reporter assays showed that RUNX2 was a target gene of miR-338-3p. Additionally, RUNX2 overexpression in ATDC5 cells reversed the protective effect of miR-338-3p on chondrocytes. Taken together, this study demonstrated that exosomes secreted from miR-338-3p-modified ASCs were effective in the repair of IL-1ß-induced chondrocyte change by inhibiting RUNX2 expression. CONCLUSIONS: Our result provided valuable data for understanding the mechanism of ASC-Exos in OA treatment.


Subject(s)
Exosomes , MicroRNAs , Osteoarthritis , Aged , Middle Aged , Humans , Chondrocytes/metabolism , MicroRNAs/metabolism , Exosomes/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Osteoarthritis/genetics , Osteoarthritis/therapy , Osteoarthritis/metabolism , Inflammation/genetics , Inflammation/metabolism , Apoptosis , Stem Cells/metabolism , Interleukin-1beta/metabolism
13.
Nature ; 610(7933): 783-790, 2022 10.
Article in English | MEDLINE | ID: mdl-36224385

ABSTRACT

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Subject(s)
gamma-Globins , Humans , Chromatin , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , gamma-Globins/biosynthesis , gamma-Globins/genetics , Hypoxia/genetics , Prolyl Hydroxylases/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA, Long Noncoding , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Erythropoiesis
14.
Leukemia ; 36(10): 2374-2383, 2022 10.
Article in English | MEDLINE | ID: mdl-36028659

ABSTRACT

Glucocorticoids (GCs) are a mainstay of contemporary, multidrug chemotherapy in the treatment of childhood acute lymphoblastic leukemia (ALL), and resistance to GCs remains a major clinical concern. Resistance to GCs is predictive of ALL relapse and poor clinical outcome, and therefore represents a major hurdle limiting further improvements in survival rates. While advances have been made in identifying genes implicated in GC resistance, there remains an insufficient understanding of the impact of cis-regulatory disruptions in resistance. To address this, we mapped the gene regulatory response to GCs in two ALL cell lines using functional genomics and high-throughput reporter assays and identified thousands of GC-responsive changes to chromatin state, including the formation of over 250 GC-responsive super-enhancers and a depletion of AP-1 bound cis-regulatory elements implicated in cell proliferation and anti-apoptotic processes. By integrating our GC response maps with genetic and epigenetic datasets in primary ALL cells from patients, we further uncovered cis-regulatory disruptions at GC-responsive genes that impact GC resistance in childhood ALL. Overall, these data indicate that GCs initiate pervasive effects on the leukemia epigenome, and that alterations to the GC gene regulatory network contribute to GC resistance.


Subject(s)
Glucocorticoids , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Cell Line, Tumor , Chromatin , Drug Resistance, Neoplasm/genetics , Epigenomics , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Glucocorticoid/genetics , Steroids , Transcription Factor AP-1/genetics
15.
J Natl Cancer Inst ; 114(8): 1109-1116, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35698272

ABSTRACT

BACKGROUND: Adult survivors of childhood cancer are at increased risk of cardiac late effects. METHODS: Using whole-genome sequencing data from 1870 survivors of European ancestry in the St. Jude Lifetime Cohort (SJLIFE) study, genetic variants were examined for association with ejection fraction (EF) and clinically assessed cancer therapy-induced cardiac dysfunction (CCD). Statistically significant findings were validated in 301 SJLIFE survivors of African ancestry and 4020 survivors of European ancestry from the Childhood Cancer Survivor Study. All statistical tests were 2-sided. RESULTS: A variant near KCNK17 showed genome-wide significant association with EF (rs2815063-A: EF reduction = 1.6%; P = 2.1 × 10-8) in SJLIFE survivors of European ancestry, which replicated in SJLIFE survivors of African ancestry (EF reduction = 1.5%; P = .004). The rs2815063-A also showed a 1.80-fold (P = .008) risk of severe or disabling or life-threatening CCD and replicated in 4020 Childhood Cancer Survivor Study survivors of European ancestry (odds ratio = 1.40; P = .04). Notably, rs2815063-A was specifically associated among survivors exposed to doxorubicin only, with a stronger effect on EF (3.3% EF reduction) and CCD (2.97-fold). Whole blood DNA methylation data in 1651 SJLIFE survivors of European ancestry showed statistically significant correlation of rs2815063-A with dysregulation of KCNK17 enhancers (false discovery rate <5%), which replicated in 263 survivors of African ancestry. Consistently, the rs2815063-A was associated with KCNK17 downregulation based on RNA sequencing of 75 survivors. CONCLUSIONS: Leveraging the 2 largest cohorts of childhood cancer survivors in North America and survivor-specific polygenomic functional data, we identified a novel risk locus for CCD, which showed specificity with doxorubicin-induced cardiac dysfunction and highlighted dysregulation of KCNK17 as the likely molecular mechanism underlying this genetic association.


Subject(s)
Cancer Survivors , Heart Diseases , Neoplasms , Adult , Child , Cohort Studies , Doxorubicin , Heart Diseases/chemically induced , Heart Diseases/epidemiology , Humans , Neoplasms/drug therapy , Neoplasms/genetics
16.
J Natl Cancer Inst ; 114(9): 1287-1295, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35575404

ABSTRACT

BACKGROUND: There is growing evidence for the inherited basis of susceptibility to childhood acute lymphoblastic leukemia (ALL). Genome-wide association studies have identified non-coding ALL risk variants at the ARID5B gene locus, but their exact functional effects and the molecular mechanism linking ARID5B to B-cell ALL leukemogenesis remain largely unknown. METHODS: We performed targeted sequencing of ARID5B in germline DNA of 5008 children with ALL. Variants were evaluated for association with ALL susceptibility using 3644 patients from the UK10K cohort as non-ALL controls, under an additive model. Cis-regulatory elements in ARID5B were systematically identified using dCas9-KRAB-mediated enhancer interference system enhancer screen in ALL cells. Disruption of transcription factor binding by ARID5B variant was predicted informatically and then confirmed using chromatin immunoprecipitation and coimmunoprecipitation. ARID5B variant association with hematological traits was examined using UK Biobank dataset. All statistical tests were 2-sided. RESULTS: We identified 54 common variants in ARID5B statistically significantly associated with leukemia risk, all of which were noncoding. Six cis-regulatory elements at the ARID5B locus were discovered using CRISPR-based high-throughput enhancer screening. Strikingly, the top ALL risk variant (rs7090445, P = 5.57 × 10-45) is located precisely within the strongest enhancer element, which is also distally tethered to the ARID5B promoter. The variant allele disrupts the MEF2C binding motif sequence, resulting in reduced MEF2C affinity and decreased local chromosome accessibility. MEF2C influences ARID5B expression in ALL, likely via a transcription factor complex with RUNX1. Using the UK Biobank dataset (n = 349 861), we showed that rs7090445 was also associated with lymphocyte percentage and count in the general population (P = 8.6 × 10-22 and 2.1 × 10-18, respectively). CONCLUSIONS: Our results indicate that ALL risk variants in ARID5B function by modulating cis-regulatory elements at this locus.


Subject(s)
Genetic Predisposition to Disease , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors/metabolism , Child , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics
17.
Science ; 376(6589): eabg5601, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389777

ABSTRACT

We established a genome-wide compendium of somatic mutation events in 3949 whole cancer genomes representing 19 tumor types. Protein-coding events captured well-established drivers. Noncoding events near tissue-specific genes, such as ALB in the liver or KLK3 in the prostate, characterized localized passenger mutation patterns and may reflect tumor-cell-of-origin imprinting. Noncoding events in regulatory promoter and enhancer regions frequently involved cancer-relevant genes such as BCL6, FGFR2, RAD51B, SMC6, TERT, and XBP1 and represent possible drivers. Unlike most noncoding regulatory events, XBP1 mutations primarily accumulated outside the gene's promoter, and we validated their effect on gene expression using CRISPR-interference screening and luciferase reporter assays. Broadly, our study provides a blueprint for capturing mutation events across the entire genome to guide advances in biological discovery, therapies, and diagnostics.


Subject(s)
Neoplasms , Promoter Regions, Genetic , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Humans , Male , Mutation , Neoplasms/genetics , Neoplasms/pathology , Oncogenes , Regulatory Sequences, Nucleic Acid , X-Box Binding Protein 1
18.
J Orthop Surg Res ; 17(1): 168, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303885

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have emerged as the attractive candidates for cell therapy for cartilage repair in clinical therapy of osteoarthritis (OA). MiR-539-3p was reported to differentially express during chondrogenic differentiation of adipose stem cells (ASCs) by miRNA microarrays. The aim of the study was to investigate the effects and underlying mechanisms of miR-539-3p on chondrogenic differentiation of ASCs. METHODS: Human ASCs (hASCs) were obtained from liposuction and transfected with miR-539-3p mimic or inhibitor. Then, the cells were cultured in chondrogenic differentiation medium including transforming growth factor-ß1 (TGF-ß1). RESULTS: Our results found that miR-539-3p was gradually down-regulated during chondrogenic differentiation of hASCs. MiR-539-3p overexpression inhibited TGF-ß1-induced chondrogenic differentiation of hASCs, as supported by reducing the gene and protein expression of chondrogenic differentiation markers type II collagen alpha 1 (COL2A1), aggrecan (ACAN), and type II collagen. In contrast, miR-539-3p inhibitor significantly promoted the chondrogenic differentiation of hASCs. Dual luciferase reporter assay demonstrated that Sox9 was a direct target gene of miR-539-3p. The expression of SRY-box transcription factor 9 (Sox9) was up-regulated progressively over time during chondrogenic differentiation of hASCs. Additionally, Sox9 overexpression notably reversed chondrogenic differentiation of hASCs inhibited by miR-539-3p mimic, as demonstrated by the decreased expression of COL2A1, ACAN, and type II collagen. CONCLUSIONS: Altogether, miR-539-3p inhibited chondrogenic differentiation of hASCs by targeting Sox9. MiR-539-3p may have significant clinical applications for use as a targeted therapy of OA.


Subject(s)
Chondrogenesis/genetics , MicroRNAs/genetics , Osteoarthritis , SOX9 Transcription Factor/metabolism , Stem Cells , Adult , Aggrecans/genetics , Chondrogenesis/drug effects , Collagen Type II/genetics , Down-Regulation , Female , Healthy Volunteers , Humans , MicroRNAs/metabolism , SOX9 Transcription Factor/genetics , Stem Cells/metabolism , Transforming Growth Factor beta1/pharmacology
19.
Blood Adv ; 5(22): 4727-4740, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34597364

ABSTRACT

Acute myeloid leukemia (AML) with MLL-rearrangement (MLL-r) comprises ∼10% of all AML cases and portends poor outcomes. Much remains uncovered on how MLL-r AML drives leukemia development while preventing cells from normal myeloid differentiation. Here, we identified that transcription factor MEF2D is a super-enhancer-associated, highly expressed gene in MLL-r AML. Knockout of MEF2D profoundly impaired leukemia growth, induced myeloid differentiation, and delayed oncogenic progression in vivo. Mechanistically, MEF2D loss led to robust activation of a CEBPE-centered myeloid differentiation program in AML cells. Chromatin profiling revealed that MEF2D binds to and suppresses the chromatin accessibility of CEBPE cis-regulatory regions. In human acute leukemia samples, MEF2D expression showed a strong negative correlation with the expression of CEBPE. Depletion of CEBPE partially rescued the cell growth defect and myeloid cell differentiation induced by the loss of MEF2D. Lastly, we show that MEF2D is positively regulated by HOXA9, and downregulation of MEF2D is an important mechanism for DOT1L inhibitor-induced antileukemia effects. Collectively, our findings suggest that MEF2D plays a critical role in human MLL-r AML and uncover the MEF2D-CEBPE axis as a crucial transcriptional mechanism regulating leukemia cell self-renewal and differentiation block.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Cell Differentiation , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia, Myeloid, Acute/genetics , MEF2 Transcription Factors/genetics , Myeloid-Lymphoid Leukemia Protein/genetics
20.
NPJ Digit Med ; 4(1): 146, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625656

ABSTRACT

The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models' performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...