Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
Add more filters










Publication year range
1.
Small ; : e2401360, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708800

ABSTRACT

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

2.
Angew Chem Int Ed Engl ; : e202407121, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775229

ABSTRACT

Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100% 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61% to 74% at -100 mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.

3.
Small Methods ; : e2301768, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738735

ABSTRACT

The synthesis of high-entropy alloys (HEAs) with ultra-small particle sizes has long been a challenging task. The complex and time-consuming synthesis process hinders their practical application and widespread adoption. This study presents the novel synthesis of TiO2 nanoparticles loaded with a quinary high-entropy alloy through flame spray pyrolysis (FSP) for the first time. The extremely fast heating rate of flame combustion makes the precursor fast pyrolysis gasification, high temperature in the flame field promotes the metal vapor mixing uniformly, and the fast quenching process can reduce the particle aggregation sintering, the ultra-small particle size of HEA firmly attached to the TiO2 surface. The catalysts prepared via this gas-to-particle pathway exhibit excellent performance in CO2 hydrogenation, achieving a conversion rate of 62% at 450 °C, and maintaining their activity for over 220 h without significant particle agglomeration. This finding provides valuable insights for the future design of catalytically active materials with enhanced activity and long-term stability.

4.
ACS Nano ; 18(20): 13428-13436, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38725103

ABSTRACT

The Co-free Ni-rich layered cathodes become pivotal to reduce cost and increase benefit toward next-generation Li-ion batteries yet raise a major challenge for their extremely fragile cathode-electrolyte interface (CEI) film. Herein, we report the in situ construction of the Si/B-enriched organic-inorganic hybrid CEI films on LiNi0.9Mn0.1O2 (NM91) with the assistance of tris(trimethylsilyl) borate (TMSB) additive. The hybrid film exhibits superior Young's modulus, mechanical strength, and ductility, which greatly dissipate the microstrain of Co-free Ni-rich cathodes under various states of charge with high structural integrity. Furthermore, the surface oxygen anions have been significantly stabilized by bonding with the Si and B ions of TMSB with high safety. These merits enable a durable Co-free Ni-rich layered cathode with 96.9% and 87.7% capacity retentions (versus 72.7% and 70.2% of NM91) at a high rate of 5C and a high-temperature of 55 °C after 100 cycles. In a pouch-type full cell, 88.8% of initial capacity is still maintained after cycling at 1C for 500 times, greatly expediting the development and application of Co-free Ni-rich layered cathodes.

5.
ACS Appl Mater Interfaces ; 16(15): 19605-19614, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568178

ABSTRACT

Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Sweat/chemistry , Microfluidics , Glucose/analysis , Monitoring, Physiologic , Textiles , Biosensing Techniques/methods
6.
J Am Chem Soc ; 146(11): 7575-7583, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466222

ABSTRACT

Electrocatalytic reactions taking place at the electrified electrode-electrolyte interface involve processes of proton-coupled electron transfer. Interfacial protons are delivered to the electrode surface via a H2O-dominated hydrogen-bond network. Less efforts are made to regulate the interfacial proton transfer from the perspective of interfacial hydrogen-bond network. Here, we present quaternary ammonium salt cationic surfactants as electrolyte additives for enhancing the H2O2 selectivity of the oxygen reduction reaction (ORR). Through in situ vibrational spectroscopy and molecular dynamics calculation, it is revealed that the surfactants are irreversibly adsorbed on the electrode surface in response to a given bias potential range, leading to the weakening of the interfacial hydrogen-bond network. This decreases interfacial proton transfer kinetics, particularly at high bias potentials, thus suppressing the 4-electron ORR pathway and achieving a highly selective 2-electron pathway toward H2O2. These results highlight the opportunity for steering H2O-involved electrochemical reactions via modulating the interfacial hydrogen-bond network.

7.
Langmuir ; 40(14): 7492-7501, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530941

ABSTRACT

The important concept of confined synthesis is considered a promising strategy for the design and synthesis of definable nanostructured materials with controllable compositions and specific morphology, such as highly loaded single-atom catalysts capable of providing abundant active sites for photocatalytic reactions. In recent years, researchers have been working on developing new confined reaction systems and searching for new confined spaces. Here, we present for the first time the concept of a bubble liquid film as a novel confined space. The liquid film has a typical sandwich structure consisting of a water layer, sandwiched between the upper and lower surfactant layers, with the thickness of the intermediate water layer at the micro- and nanometer scales, which can serve as a good confinement. Based on the above understanding and combined with the photodeposition method, we successfully confined synthesized Ag/TiO2, Au/TiO2, and Pd/TiO2 photocatalysts in liquid film. By HAADF-STEM, it can be seen that the noble metal morphologies are all nanoclusters of about 1 nm and are highly uniformly dispersed on the TiO2 surface. Compared with photodeposition in solution, we believe that the surfactant molecular layer restricts a limited amount of precursor to the liquid film, avoiding the accumulation of noble metals and the formation of large particle size nanoparticles. The liquid film, meanwhile, restricts the migration path of noble metal precursors, allowing for thorough in situ photodeposition and enables the complete and uniform dispersion of noble metal precursors, greatly reducing the photodeposition time. The uniform loading of the three noble metals proved the universality of the method, and the catalysts showed high activity for photocatalytic CO2 reduction. The rates of reduction of CO2 to CO over the Ag/TiO2 photocatalytic reached 230 µmol g-1 h-1.This study provides a new idea for the expansion of the confined reaction system and a reference for the study of liquid film as the confined space.

8.
Proc Natl Acad Sci U S A ; 121(10): e2317282121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38416683

ABSTRACT

Micro-sized single-crystalline Ni-rich cathodes are emerging as prominent candidates owing to their larger compact density and higher safety compared with poly-crystalline counterparts, yet the uneven stress distribution and lattice oxygen loss result in the intragranular crack generation and planar gliding. Herein, taking LiNi0.83Co0.12Mn0.05O2 as an example, an optimal particle size of 3.7 µm is predicted by simulating the stress distributions at various states of charge and their relationship with fracture free-energy, and then, the fitted curves of particle size with calcination temperature and time are further built, which guides the successful synthesis of target-sized particles (m-NCM83) with highly ordered layered structure by a unique high-temperature short-duration pulse lithiation strategy. The m-NCM83 significantly reduces strain energy, Li/O loss, and cationic mixing, thereby inhibiting crack formation, planar gliding, and surface degradation. Accordingly, the m-NCM83 exhibits superior cycling stability with highly structural integrity and dual-doped m-NCM83 further shows excellent 88.1% capacity retention.

9.
Small ; : e2311346, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308159

ABSTRACT

Single-atom catalysts (SACs) exhibit remarkable catalytic activity at each metal site. However, conventionally synthesized single-atom catalysts often possess low metal loading, thereby constraining their overall catalytic performance. Here, a flame spray pyrolysis (FSP) method for the synthesis of a single-atom catalyst with a high loading capacity of up to 1.4 wt.% in practice is reported. CeZrO2 acts as a carrier and provides a large number of anchoring sites, which promotes the high-density generation of Pd, and the strong interaction between the metal and the support avoids atom aggregation. Pd-CeZrO2 series catalysts have excellent CO oxidation performance. When 0.97 wt.% Pd is added, the catalytic activity is the highest, and the temperature can be reduced to 120 °C. This work presented here demonstrates that FSP, as an inherently scalable technique, allows for elevating the single-atom loading to achieve an increase in its catalytic performance. The method presented here more options for the preparation of SACs.

10.
Adv Mater ; 36(18): e2312204, 2024 May.
Article in English | MEDLINE | ID: mdl-38271730

ABSTRACT

The electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) involves a multistep proton-coupled electron transfer (PCET) process that generates a variety of intermediates, making it challenging to transform them into target products with high activity and selectivity. Here, a catalyst featuring a nanosheet-stacked sphere structure with numerous open and deep conical cavities (OD-CCs) is reported. Under the guidance of the finite-element method (FEM) simulations and theoretical analysis, it is shown that exerting control over the confinement space results in diffusion limitation of the carbon intermediates, thereby increasing local pressure and subsequently enhancing localized *CO coverage for dimerization. The nanocavities exhibit a structure-driven shift in selectivity of multicarbon (C2+) product from 41.8% to 81.7% during the CO2RR process.

11.
Small ; : e2311891, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178190

ABSTRACT

The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2 CO3 ) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2 CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2 CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2 CO3 , thus greatly reducing the decomposition potential of Li2 CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1 ) compared to the unmodified Li2 CO3 (nearly no capacity above 4.6 V). Meantime, the Li2 CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.

12.
Small ; 20(11): e2306795, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095535

ABSTRACT

The formation of carbonate in neutral/alkaline solutions leads to carbonate crossover, severely reducing carbon dioxide (CO2 ) single pass conversion efficiency (SPCE). Thus, CO2 electrolysis is a prospective route to achieve high CO2 utilization under acidic environment. Bimetallic Bi-based catalysts obtained utilizing metal doping strategies exhibit enhanced CO2 -to-formic acid (HCOOH) selectivity in alkaline/neutral media. However, achieving high HCOOH selectivity remains challenging in acidic media. To this end, Indium (In) doped Bi2O2CO3 via hydrothermal method is prepared for in-situ electroreduction to In-Bi/BiOx nanosheets for acidic CO2 reduction reaction (CO2RR). In doping strategy regulates the electronic structure of Bi, promoting the fast derivatization of Bi2O2CO3 into Bi-O active sites to enhance CO2RR catalytic activity. The optimized Bi2 O2 CO3 -derived catalyst achieves the maximum HCOOH faradaic efficiency (FE) of 96% at 200 mA cm-2 . The SPCE for HCOOH production in acid is up to 36.6%, 2.2-fold higher than the best reported catalysts in alkaline environment. Furthermore, in situ Raman and X-ray photoelectron spectroscopy demonstrate that In-induced electronic structure modulation promotes a rapid structural evolution from nanobulks to Bi/BiOx nanosheets with more active species under acidic CO2 RR, which is a major factor in performance improvement.

13.
Small ; 20(4): e2306160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715337

ABSTRACT

The energy density of Ni-rich cathodes is expected to be further unlocked by increasing the cut-off voltage to above 4.3 V, which nevertheless come with significantly increased irreversible phase transition and abundant side reactions. In this study, the perovskite oxides enhanced radial-aligned LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathodes are reported, in which the coherent-growth La2 [LiTM]O4 clusters are evenly riveted into the crystals and the stable Lax Ca1- x [TM]O3- x protective layer is concurrently formed on the surface. The reciprocal interactions greatly reduce the lattice strain during de-/lithiation. Meantime, the abundant oxygen vacancies of the coating layer are proved to reversibly capture (state of charge) and re-release (state of discharge) the oxygen radicals, fully avoiding their correlative side reactions. The resultant NCM811 displays negligible O2 and CO2 emissions when charging to 4.5 V as well as a thinner CEI film, therefore delivering a large capacity of 225 mAh g-1 at 0.1C in coin-type half-cells and a high retention of 88.3% after 1000 cycles at 1C in pouch-type full-cells within 2.7-4.5 V. The development of high-voltage Ni-rich cathodes exhibits a highly effective pathway to further increase their energy density.

14.
Nanoscale ; 15(38): 15649-15655, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37724004

ABSTRACT

Electrochemical biomass valorization provides a promising approach to generating value-added chemicals. Herein, we have creatively utilized a Prussian blue analogue as a structure template of the anodic catalyst and improved its catalyst capacity by adjusting its electronic structure. The nickel-based Prussian blue analogue/Ni foam (NiFe-PBA/NF) exhibits excellent performance for methanol (MeOH) oxidation and achieves almost 94.1% FE of formic acid at a high current density of 500 mA cm-2. Apart from formic acid, NiFe-PBA/NF also has good catalytic ability for ethanol, glycerol, glucose, and 5-hydroxymethylfurfural (HMF). In short, this work has developed a promising class of catalysts for biomass valorization.

15.
ACS Nano ; 17(17): 17095-17104, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37610225

ABSTRACT

Developing isotropic-dominated microstrain relaxation is a vital step toward the enhancement of cyclic performance and thermal stability for high-energy-density Ni-rich cathodes. Here, a microstructure engineering strategy is employed for synthesizing the elongated primary particles radially aligned Ni-rich cathodes only by regulating the precipitation rates of cations and the distributions of flow field. The as-obtained cathode also exhibits an enlarged lattice distance and highly exposed (003) plane. The high aspect ratio and favorable atomic arrangement of primary particles not only enable isotropic strain relaxation for effectively suppressing microcrack formation and propagation, but also facilitate Li-ion diffusion with greatly reduced Li/Ni mixing. Consequently, it shows obvious superiority in the high-rate, long-cycle life, and thermal stability compared with the conventional counterparts. After modification, an exceptionally long life is achieved with a capacity retention of 90.1% at 1C and 84.3% at 5C after 1500 cycles within 3.0-4.3 V in a 1.5-Ah pouch cell. This work offers a universal strategy to achieve isotropic strain distribution for conveniently enhancing the durability of Ni-rich cathodes.

16.
Sci Bull (Beijing) ; 68(19): 2190-2199, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37580202

ABSTRACT

Electrocatalytic conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) presents a compelling strategy for the production of premium chemicals via the utilization of renewable energy sources. Exploring efficient catalytic systems to obtain highly selective BHMF has remained a giant challenge. A design strategy is proposed here to regulate active hydrogen (Hads) production in rhodium (Rh) nanoparticles grown on Cu nanowires (RhCu NWs) catalyst, which achieves a faradaic efficiency (FE) of 92.6% in the electrocatalytic reduction of HMF to BHMF at -20 mA cm-2 with no degradation in performance after 8 cycles. Kinetic investigations and electron spin resonance (ESR) spectroscopy reveal that the incorporation of Rh accelerates the water dissociation and facilitates the generation of Hads. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) further demonstrates that the Rh component boosts the proportion of ordered weakly hydrogen-bonded water molecules on the catalyst surface, which is much easier to dissociate. The construction of an interfacial Hads-rich environment promotes the HMF intermediates binding with Hads to BMHF, thereby suppressing the formation of undesired dimers. This work demonstrates the promise of altering the interfacial water environment as a strategy to boost the electrosynthetic properties of biomass-derived products toward value-added outcomes.

17.
Angew Chem Int Ed Engl ; 62(33): e202307848, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37378584

ABSTRACT

The site isolation strategy has been employed in thermal catalytic acetylene semihydrogenation to inhibit overhydrogenation and C-C coupling. However, there is a dearth of analogous investigations in electrocatalytic systems. In this work, density functional theory (DFT) simulations demonstrate that isolated Cu metal sites have higher energy barriers on overhydrogenation and C-C coupling. Following this result, we develop Cu single-atom catalysts highly dispersed on nitrogen-doped carbon matrix, which exhibit high ethylene selectivity (>80 % Faradaic efficiency for ethylene, <1 % Faradaic efficiency for C4 , and no ethane) at high concentrations of acetylene. The superior performance observed in the electrocatalytic selective hydrogenation of acetylene can be attributed to the weak adsorption of ethylene intermediates and highly energy barriers on C-C coupling at isolated sites, as confirmed by both DFT calculations and experimental results. This study provides a comprehensive understanding of the isolated sites inhibiting the side reactions of electrocatalytic acetylene semihydrogenation.

18.
Adv Mater ; 35(39): e2303353, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37339476

ABSTRACT

The major challenge in achieving high-performance stretchable zinc-ion energy-storage devices is the combination of stretchable dendrite-free zinc negative electrodes and sufficient bonding between components (current collector, electrode, separator, and package). Herein, based on a series of physicochemically tunable self-healing polyurethanes, an elastic current collector is prepared through a swelling-induced wrinkling method, and then a stretchable zinc negative electrode prepared through in situ confined electroplating. The elastic current collector has a nano-network structure with polyurethane encapsulation, and exhibits both geometric and intrinsic stretchability. The stretchable zinc negative electrode formed in situ has high electrochemical activity and exhibits an excellent cycle life under the protection of a Zn2+ -permeable coating. Furthermore, fully polyurethane-based stretchable zinc-ion capacitors are assembled through in situ electrospinning and hot-pressing techniques. Due to the high stretchability of the components and the interfusion of the matrixes, the integrated device exhibits excellent deformability and desirable electrochemical stability. This work provides a systematic construction plan for stretchable zinc-ion energy-storage devices in three aspects: material synthesis, component preparation, and device assembly.

19.
Angew Chem Int Ed Engl ; 62(27): e202304413, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37160619

ABSTRACT

Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2 O2 ) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e- oxygen reduction to H2 O, is essential for highly selective H2 O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2 O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2 O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e- ORR and achieving over 90 % selectivity of H2 O2 . This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.

20.
ACS Appl Mater Interfaces ; 15(19): 23306-23315, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37132505

ABSTRACT

Electrochemical carbon dioxide (CO2) reduction for C2 products has been studied on a series of supported Cu-based catalysts; however, the charge-promotion effects from the substrates for the selectivity of CO2 reduction are still unclear. Here we localize nanosized Cu2O on three carbon-based substrates that provide different charge-promotion effects: positively charged boron-doped graphene (BG), negatively charged nitrogen-doped graphene (NG), and weak negatively charged reduced graphene oxide (rGO). We demonstrate that the charge-promotion effects lead to an increase in faradaic efficiency (FE) for C2 products with an order of rGO/Cu < BG/Cu < pure Cu < NG/Cu and an FEC2/FEC1 ratio from 0.2 to 7.1. By performing in situ characterization, electrokinetic investigations, and density functional theory (DFT) calculations, we reveal that the negatively charged NG is favorable for stabilizing Cu+ species under CO2 reduction, which strengthens CO* adsorption to further boost C-C coupling for C2 products. As a result, we achieve a high C2+ FE of ∼68% at high current densities of 100-250 mA cm-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...