Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 314(2): H236-H245, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28971840

ABSTRACT

The physiological role of cardiac late Na+ current ( INa) has not been well described. In this study, we tested the hypothesis that selective inhibition of physiological late INa abbreviates the normal action potential (AP) duration (APD) and counteracts the prolongation of APD and arrhythmic activities caused by inhibition of the delayed rectifier K+ current ( IKr). The effects of GS-458967 (GS967) on the physiological late INa and APs in rabbit isolated ventricular myocytes and on the monophasic APs and arrhythmias in rabbit isolated perfused hearts were determined. In ventricular myocytes, GS967 and, for comparison, tetrodotoxin concentration dependently decreased the physiological late INa with IC50 values of 0.5 and 1.9 µM, respectively, and significantly shortened the APD measured at 90% repolarization (APD90). A strong correlation between inhibition of the physiological late INa and shortening of APD by GS967 or tetrodotoxin ( R2 of 0.96 and 0.97, respectively) was observed. Pretreatment of isolated myocytes or hearts with GS967 (1 µM) significantly shortened APD90 and monophasic APD90 and prevented the prolongation and associated arrhythmias caused by the IKr inhibitor E4031 (1 µM). In conclusion, selective inhibition of physiological late INa shortens the APD, stabilizes ventricular repolarization, and decreases the proarrhythmic potential of pharmacological agents that slow ventricular repolarization. Thus, selective inhibition of late INa may constitute a generalizable approach to stabilize ventricular repolarization and suppress arrhythmogenicity associated with conditions whereby AP or QT intervals are prolonged. NEW & NOTEWORTHY The contribution of physiological late Na+ current in action potential duration (APD) of rabbit cardiac myocytes was estimated. The inhibition of this current prevented the prolongation of APD in rabbit cardiac myocytes, the prolongation of monophasic APD, and generation of arrhythmias in rabbit isolated hearts caused by delayed rectifier K+ current inhibition.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/prevention & control , Heart Rate/drug effects , Heart Ventricles/drug effects , Myocytes, Cardiac/drug effects , Pyridines/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/drug effects , Triazoles/pharmacology , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cardiac Pacing, Artificial , Disease Models, Animal , Female , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , In Vitro Techniques , Isolated Heart Preparation , Kinetics , Myocytes, Cardiac/metabolism , Piperidines , Rabbits , Sodium Channels/metabolism , Tetrodotoxin/pharmacology
2.
J Med Chem ; 59(19): 9005-9017, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27690427

ABSTRACT

Late sodium current (late INa) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Nav 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late INa, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia-ventricular fibrillation (VT-VF). We will describe structure-activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late INa inhibitor 1 (ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S-T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC50 values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late INa inhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.

3.
J Pharmacol Exp Ther ; 344(1): 23-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23010360

ABSTRACT

Inhibition of cardiac late sodium current (late I(Na)) is a strategy to suppress arrhythmias and sodium-dependent calcium overload associated with myocardial ischemia and heart failure. Current inhibitors of late I(Na) are unselective and can be proarrhythmic. This study introduces GS967 (6-[4-(trifluoromethoxy)phenyl]-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine), a potent and selective inhibitor of late I(Na), and demonstrates its effectiveness to suppress ventricular arrhythmias. The effects of GS967 on rabbit ventricular myocyte ion channel currents and action potentials were determined. Anti-arrhythmic actions of GS967 were characterized in ex vivo and in vivo rabbit models of reduced repolarization reserve and ischemia. GS967 inhibited Anemonia sulcata toxin II (ATX-II)-induced late I(Na) in ventricular myocytes and isolated hearts with IC(50) values of 0.13 and 0.21 µM, respectively. Reduction of peak I(Na) by GS967 was minimal at a holding potential of -120 mV but increased at -80 mV. GS967 did not prolong action potential duration or the QRS interval. GS967 prevented and reversed proarrhythmic effects (afterdepolarizations and torsades de pointes) of the late I(Na) enhancer ATX-II and the I(Kr) inhibitor E-4031 in isolated ventricular myocytes and hearts. GS967 significantly attenuated the proarrhythmic effects of methoxamine+clofilium and suppressed ischemia-induced arrhythmias. GS967 was more potent and effective to reduce late I(Na) and arrhythmias than either flecainide or ranolazine. Results of all studies and assays of binding and activity of GS967 at numerous receptors, transporters, and enzymes indicated that GS967 selectively inhibited late I(Na). In summary, GS967 selectively suppressed late I(Na) and prevented and/or reduced the incidence of experimentally induced arrhythmias in rabbit myocytes and hearts.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/drug therapy , Cardiotonic Agents/pharmacology , Pyridines/pharmacology , Sodium Channel Blockers/pharmacology , Triazoles/pharmacology , Acetanilides/pharmacology , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Cnidarian Venoms/pharmacology , Female , Flecainide/pharmacology , Heart Conduction System/drug effects , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Mutation/physiology , Myocardial Ischemia/complications , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Piperazines/pharmacology , Potassium Channel Blockers/pharmacology , Quaternary Ammonium Compounds/pharmacology , Rabbits , Ranolazine
SELECTION OF CITATIONS
SEARCH DETAIL
...