Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991722

ABSTRACT

Morinda officinalis How oligosaccharide (MOO) stands as one of the principal active constituents of M. officinalis How, widely employed in traditional Chinese medicine. The methods for MOO extraction predominantly encompass hot water extraction, ethanol extraction, ultrasonic-assisted extraction, and microwave-assisted extraction. Distinct extraction techniques yield varying MOO quantities. MOO encompasses a diversity of oligosaccharides, including bajijiasu, sucrose, 1-kestose, nystose, mannose, 1F-fructofuranosylnystose, 1,1,1,1-kestohexose, fructoheptasaccharide, inulin-type hexasaccharide, inulin-type heptasaccharide, inulotriose, inulotetraose, inulopentaose, and mannose. MOO exhibits a wide spectrum of biological activities, exerting specific effects on the nervous system, cardiovascular system, motor system, reproductive system, and immune system. It demonstrates antidepressant properties, offers potential in mitigating Alzheimer's disease, stimulates angiogenesis, and possesses anti-osteoporotic and other pharmacological effects. Clinically, when combined with various antidepressants, MOO exhibits specific therapeutic efficacy across multiple forms of depression. As a naturally occurring plant oligosaccharide, MOO holds diverse pharmaceutical applications. This article conducts a review of the latest extraction and purification methodologies, structural characterization analysis, biological activity assessment, and clinical applications of MOO. Such a comprehensive analysis yields innovative insights for advancing the research and application of MOO in the future.

2.
Mini Rev Med Chem ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37642001

ABSTRACT

Tamarixetin and its glycosides are widely distributed in natural plants, and they are also natural flavonoid derivatives of quercetin. Its main pharmacological effects include antioxidant, anti-inflammatory, antiviral, anticancer, cardiovascular effects, etc. The pharmacokinetics showed that the distribution of direct absorption differed from that of biosynthesis. At the same time, research shows that tamarixetin is safe to use because it has little self-toxicity. In this paper, 181 articles on tamarixetin published from 1976 to 2023 are obtained from PubMed, China Knowledge Base Database, Wanfang Data, and other electronic databases. Tamarixetin is searched based on keywords, and 121 articles remain. Transformation synthesis, pharmacokinetics, pharmacological action, and structure-activity relationship of tamarixetin were reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...