Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
BMC Plant Biol ; 24(1): 842, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242989

ABSTRACT

BACKGROUND: Calcium-dependent protein kinase (CDPK) plays a key role in cotton tolerance to abiotic stress. However, its role in cotton heat stress tolerance is not well understood. Here, we characterize the GhCDPK gene family and their expression profiles with the aim of identifying CDPK genes associated with heat stress tolerance. RESULTS: This study revealed 48 GhCDPK members in the cotton genome, distributed on 18 chromosomes. Tree phylogenetic analysis showed three main clustering groups of the GhCDPKs. Cis-elements revealed many abiotic stress and phytohormone pathways conserved promoter regions. Similarly, analysis of the transcription factor binding sites (TFBDS) in the GhCDPK genes showed many stress and hormone related sites. The expression analysis based on qRT-PCR showed that GhCDPK16 was highly responsive to high-temperature stress. Subsequent protein-protein interactions of GhCDPK16 revealed predictable interaction with ROS generating, calcium binding, and ABA signaling proteins. Overexpression of GhCDPK16 in cotton and Arabidopsis improved thermotolerance by lowering ROS compound buildup. Under heat stress, GhCDPK16 transgenic lines upregulated heat-inducible genes GhHSP70, GHSP17.3, and GhGR1, as demonstrated by qRT-PCR analysis. Contrarily, GhCDPK16 knockout lines in cotton exhibited an increase in ROS accumulation. Furthermore, antioxidant enzyme activity was dramatically boosted in the GhCDPK16-ox transgenic lines. CONCLUSIONS: The collective findings demonstrated that GhCDPK16 could be a viable gene to enhance thermotolerance in cotton and, therefore, a potential candidate gene for improving heat tolerance in cotton.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Heat-Shock Response , Plant Proteins , Protein Kinases , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Heat-Shock Response/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Phylogeny , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Thermotolerance/genetics
2.
Gene ; 928: 148800, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39067545

ABSTRACT

ETHYLENE-INSENSITIVE3 (EIN3) or EIN3-Like (EIL) proteins, play critical roles in integrating ethylene signaling and physiological regulation in plants by modulating the expression of various downstream genes, such as ethylene-response factors (ERFs). However, little is known about the characteristics of EIN3/EILs in the gymnosperm Ginkgo biloba. In the present study, a genome-wide comparative analysis of Ginkgo EIN3/EIL gene family was performed with those from an array of species, including bryophytes (Physcomitrella patens), gymnosperms (Cycas panzhihuaensis), and angiosperms (Arabidopsis thaliana, Gossypium raimondii, Gossypium hirsutum, Oryza sativa, and Brachypodium distachyon). Within the constructed phylogenetic tree for the 53 EIN3/EILs identified, 5 GbEILs from G. biloba, 2 PpEILs from P. patens, and 3 CpEILs from C. panzhihuaensis were assigned to one cluster, suggesting that their derivation occurred after the split of their ancestors and angiosperms. Although considerable divergence accumulated in amino acid sequences along with the evolutionary process, the specific EIN3_DNA-binding domains were evolutionarily conserved among the 53 EIN3/EILs. Collinearity analysis indicated that whole-genome or segmental duplication and subsequent purifying selection might have prompted the generation and evolution of EIN3/EIL multigene families. Based on the expression patterns of five GbEILs at the four developmental stages of Ginkgo ovules, one GbEIL gene (Gb_03292) was further investigated for its role in mediating ethylene signaling. The functional activity of Gb_03292 was closely related to ethylene signaling, as it complemented the triple response via ectopic expression in ein3eil1 double mutant Arabidopsis. Additionally, GbEIL likely modulates the expression of a Ginkgo ERF (Gb_15517) by directly binding to its promoter. These results demonstrated that the GbEIL gene could have participated in mediating ethylene signal transduction during ovule development in G. biloba. The present study also provides insights into the conservation of ethylene signaling across the gymnosperm G. biloba and angiosperm species.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Ginkgo biloba , Multigene Family , Phylogeny , Plant Proteins , Signal Transduction , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Sci Data ; 11(1): 779, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013864

ABSTRACT

Prevalent Shortwave downward radiation (SWDR) estimates assume a flat surface, neglecting topographic effects and leading to significant errors in mountainous regions. We introduce SWDR topography correction coefficients (TCCs), based on the mountain radiative transfer model tailored for the Pan-Third Pole region. This dataset effectively bridges the disparities between flat-surface SWDR and rugged-surface SWDR, forming part of the Long-term Earth System spatiotemporally Seamless Radiation budget dataset (LessRad). Validation results using a three-dimensional radiative transfer model demonstrate the efficacy of this method in correcting solar direct radiation, sky diffuse radiation, and SWDR under diverse conditions. At a spatial resolution of 2.5 arc-minutes, the correction accuracy for solar direct radiation is characterized by a coefficient of determination (R²) of 0.998, a relative root mean square error (rRMSE) of 2.4%, and a relative bias (rbias) of 0.8%. For sky diffused radiation, an R² of 0.965, a rRMSE of 1.2%, and a rbias of -0.8%. SWDR corrections under clear and cloudy skies also show high accuracy, demonstrating the robustness of the TCCs approach.

4.
Front Plant Sci ; 14: 1088537, 2023.
Article in English | MEDLINE | ID: mdl-37409297

ABSTRACT

Introduction: Cotton (Gossypium hirsutum L.) is susceptible to long-term waterlogging stress; however, genomic information of cotton response mechanisms toward long days of waterlogging is quite elusive. Methods: Here, we combined the transcriptome and metabolome expression level changes in cotton roots after 10 and 20 days of waterlogging stress treatment pertaining to potential resistance mechanisms in two cotton genotypes. Results and discussion: Numerous adventitious roots and hypertrophic lenticels were induced in CJ1831056 and CJ1831072. Transcriptome analysis revealed 101,599 differentially expressed genes in cotton roots with higher gene expression after 20 days of stress. Reactive oxygen species (ROS) generating genes, antioxidant enzyme genes, and transcription factor genes (AP2, MYB, WRKY, and bZIP) were highly responsive to waterlogging stress among the two genotypes. Metabolomics results showed higher expressions of stress-resistant metabolites sinapyl alcohol, L-glutamic acid, galactaric acid, glucose 1-phosphate, L-valine, L-asparagine, and melibiose in CJ1831056 than CJ1831072. Differentially expressed metabolites (adenosine, galactaric acid, sinapyl alcohol, L-valine, L-asparagine, and melibiose) significantly correlated with the differentially expressed PRX52, PER1, PER64, and BGLU11 transcripts. This investigation reveals genes for targeted genetic engineering to improve waterlogging stress resistance to enhance abiotic stress regulatory mechanisms in cotton at the transcript and metabolic levels of study.

6.
Front Plant Sci ; 13: 841161, 2022.
Article in English | MEDLINE | ID: mdl-35812965

ABSTRACT

With the continuous growth of the human population, the demand for fiber is also rising sharply. As one of the main fiber plants available globally, cotton fiber yield (Gossypium hirsutum) is affected by boll abscission, which is related to the formation of the abscission layer. Therefore, we explored the formation of the abscission layer in cotton. The formation of the abscission layer in the cotton boll stalk was promoted by exogenous ethylene. It was found that both the number of the Golgi apparatus and the number of stacking layers increased in the dissociated cells. The GhArfGAP gene family in cotton was screened by the bioinformatics method, and the species and evolutionary relationship of the GhArfGAP gene family were analyzed. qRT-PCR showed that GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 in cotton had spatiotemporal-specific expression patterns. Subcellular localization suggested that GhArfGAP25 played a role in the Golgi apparatus. The expression of GhArfGAP25 in transgenic Arabidopsis thaliana is increased in the roots, stems, and leaves. Finally, we found that ethylene could induce the formation of the abscission layer in cotton. GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 might regulate the changes in the Golgi apparatus in the abscission layer. Taken together, the findings provide new ideas for the study of the formation of cotton abscission.

8.
Plants (Basel) ; 11(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684283

ABSTRACT

Calmodulins (CAMs) and calmodulin-like proteins (CMLs) can participate in the regulation of various physiological processes via sensing and decoding Ca2+ signals. To reveal the characteristics of the CAM/CML family in Ginkgo biloba, a comprehensive analysis was performed at the genome-wide level. A total of 26 CAMs/CMLs, consisting of 5 GbCAMs and 21 GbCMLs, was identified on 11 out of 12 chromosomes in G. biloba. They displayed a certain degree of multiplicity in their sequences, albeit with conserved EF hands. Collinearity analysis suggested that tandem rather than segmental or whole-genome duplications were likely to play roles in the evolution of the Ginkgo CAM/CML family. Furthermore, GbCAMs/GbCMLs were grouped into higher, lower, and moderate expression in magnitude. The cis-acting regulatory elements involved in phytohormone-responsiveness within GbCAM/GbCML promotors may explain their varied expression profiles. The ectopic expression of a GbCML gene (Gb_30819) in transgenic Arabidopsis led to phenotypes with significantly shortened root length and seedling height, and decreased yields of both pods and seeds. Moreover, an electrophoresis mobility shift assay demonstrated the Ca2+-binding activity of Gb_30819 in vitro. Altogether, these results contribute to insights into the characteristics of the evolution and expression of GbCAMs/GbCMLs, as well as evidence for Ca2+-CAM/CML pathways functioning within the ancient gymnosperm G. biloba.

9.
Funct Integr Genomics ; 22(2): 179-192, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35059909

ABSTRACT

Vacuolar processing enzymes (VPEs) play important roles in plant development, programmed cell death, and the responsiveness to biotic and abiotic stresses. To characterize the VPEs in upland cotton (Gossypium hirsutum), the VPE gene family within four Gossypium species, consisting of G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, together with Arabidopsis thaliana, was comparatively analyzed at the genome-wide level. As a result, a total of 43 VPEs were identified, including 13 GhVPEs, 12 GbVPEs, 7 GaVPEs, and 7 GrVPEs, which are evenly distributed with one gene on a chromosome from four Gossypium species, respectively. The phylogenetic tree showed that the identified VPEs within the four Gossypium species could be categorized into ß-type, δ-type, and γ-type VPE clades. Collinearity analysis presented 36 of intraspecies VPE-pairs and 152 of interspecies VPE-pairs, respectively, which are included in synteny blocks on chromosome. These results indicate that VPE duplication events have accorded well with the whole genome duplication. And expression profiles of GhVPEs in G. hirsutum seedlings demonstrated that the GhVPEs from the same clade are not necessarily identical in the pattern of transcriptional expression. Upon abiotic stresses (i.e., waterlogging and salt treatments), three GhVPEs (i.e., Ghir_A05G004610, Ghir_A09G011870, and Ghir_D09G011410) were significantly upregulated in their expression amounts, respectively. The GhVPE genes that presented inducible expression under some abiotic stresses may be applied to the improvement of resilience to abiotic stresses for the cultivated cottons.


Subject(s)
Gossypium , Seedlings , Gene Expression Regulation, Plant , Genome, Plant , Gossypium/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological/genetics
11.
Front Endocrinol (Lausanne) ; 12: 781763, 2021.
Article in English | MEDLINE | ID: mdl-34938273

ABSTRACT

Objectives: To investigate the serum, plasma and urine levels of lipocalin-2 (LCN2) variants in healthy humans and their associations with risk factors for cardiometabolic (CMD) and chronic kidney (CKD) diseases. Methods: Fifty-nine males and 41 females participated in the study. Blood and urine were collected following an overnight fasting. LCN2 variants were analyzed using validated in-house ELISA kits. Heart rate, blood pressure, lipids profile, glucose, adiponectin, high-sensitivity C-reactive protein (hsCRP), creatinine, cystatin C, and biomarkers for kidney function were assessed. Results: The levels of hLcn2, C87A and R81E in serum and urine, but not plasma, were significantly higher in men than women. Increased levels of LCN2 variants, as well as their relative ratios, in serum and plasma were positively associated with body mass index, blood pressure, triglyceride and hsCRP (P<0.05). No significant correlations were found between these measures and hLcn2, C87A or R81E in urine. However, LCN2 variants in urine, but not plasma or serum, were correlated with biomarkers of kidney function (P<0.05). Conclusions: Both the serum and plasma levels of LCN2 variants, as well as their ratios are associated with increased cardiometabolic risk, whereas those in urine are correlated with renal dysfunction. LCN2 variants represent promising biomarkers for CMD and CKD.


Subject(s)
Genetic Variation/genetics , Heart Diseases/genetics , Kidney Diseases/genetics , Lipocalin-2/genetics , Adult , Female , Heart Diseases/metabolism , Humans , Kidney Diseases/metabolism , Lipocalin-2/metabolism , Male , Middle Aged , Risk Factors
12.
Front Psychol ; 12: 699738, 2021.
Article in English | MEDLINE | ID: mdl-34759858

ABSTRACT

Psychological ownership critically entails the need for home (a place in which to dwell or a place of belongingness). However, the question of how an individual's need for belongingness within an organization affects their psychological ownership of organization-linked objects remains unexplored. We first conducted a behavioral study to determine whether psychological ownership of object can be elicited by marking the object with the name of the subjects' organization. The participants in this behavioral study reported a higher level of psychological ownership when objects were marked with their own organization's name (i.e., in-organization objects) compared with objects marked with another organization's name (i.e., out-organization objects). Importantly, this effect was more pronounced among subjects who experienced a stronger sense of organizational belongingness. We subsequently conducted a second study to explore its underlying neural mechanism. Our findings indicated that participants with a higher level of perceived organizational belongingness exhibited a significantly larger amplitude of the P300 component of event-related potential in response to in-organization objects compared with their response to out-organization objects. However, no significant difference in the P300 component was found for participants who lacked a sense of organizational belongingness.

13.
PLoS One ; 16(5): e0246649, 2021.
Article in English | MEDLINE | ID: mdl-33961624

ABSTRACT

ABC (ATP-binding cassette) transporters are a class of superfamily transmembrane proteins that are commonly observed in natural organisms. The ABCC (ATP-binding cassette C subfamily) protein belongs to a subfamily of the ABC protein family and is a multidrug resistance-associated transporter that localizes to the tonoplast and plays a significant role in pathogenic microbial responses, heavy metal regulation, secondary metabolite transport, and plant growth. Recent studies have shown that the ABCC protein is also involved in the transport of anthocyanins/proanthocyanidins (PAs). To clarify the types and numbers of ABCC genes involved in PA transport in Gossypium hirsutum, the phylogenetic evolution, physical location, and structure of ABCC genes were classified by bioinformatic methods in the upland cotton genome, and the expression levels of these genes were analyzed at different developmental stages of the cotton fiber. The results showed that 42 ABCC genes were initially identified in the whole genome of upland cotton; they were designated GhABCC1-42. The gene structure and phylogenetic analysis showed that the closely related ABCC genes were structurally identical. The analysis of chromosomal localization demonstrated that there were no ABCC genes on the chromosomes of AD/At2, AD/At5, AD/At6, AD/At10, AD/At12, AD/At13, AD/Dt2, AD/Dt6, AD/Dt10, and AD/Dt13. Outside the genes, there were ABCC genes on other chromosomes, and gene clusters appeared on the two chromosomes AD/At11 and AD/Dt8. Phylogenetic tree analysis showed that some ABCC proteins in G. hirsutum were clustered with those of Arabidopsis thaliana, Vitis vinifera and Zea mays, which are known to function in anthocyanin/PA transport. The protein structure prediction indicated that the GhABCC protein structure is similar to the AtABCC protein in A. thaliana, and most of these proteins have a transmembrane domain. At the same time, a quantitative RT-PCR analysis of 42 ABCC genes at different developmental stages of brown cotton fiber showed that the relative expression levels of GhABCC24, GhABCC27, GhABCC28, GhABCC29 and GhABCC33 were consistent with the trend of PA accumulation, which may play a role in PA transport. These results provide a theoretical basis for further analysis of the function of the cotton ABCC genes and their role in the transport of PA.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Gene Expression Profiling , Genomics , Gossypium/genetics , Gossypium/metabolism , Pigments, Biological/metabolism , Multigene Family/genetics , Phylogeny
14.
PLoS One ; 16(2): e0246021, 2021.
Article in English | MEDLINE | ID: mdl-33630882

ABSTRACT

Abscisic acid (ABA) is an important plant hormone that plays multiple roles in regulating growth and development as well as in stress responses in plants. The NCED gene family includes key genes involved in the process of ABA synthesis. This gene family has been found in many species; however, the function of the NCED gene family in cotton is unclear. Here, a total of 23 NCED genes (designated as GhNCED1 to GhNCED23) were identified in cotton. Phylogenetic analysis indicated that the identified NCED proteins from cotton and Arabidopsis could be classified into 4 subgroups. Conserved motif analysis revealed that the gene structure and motif distribution of proteins within each subgroup were highly conserved. qRT-PCR and ABA content analyses indicated that NCED genes exhibited stage-specific expression patterns at tissue development stages. GhNCED5, GhNCED6 and GhNCED13 expression was similar to the change in ABA content, suggesting that this gene family plays a role in ABA synthesis. These results provide a better understanding of the potential functions of GhNCED genes.


Subject(s)
Gene Expression Profiling , Genomics , Gossypium/genetics , Plant Proteins/genetics , Amino Acid Motifs , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Developmental , Gossypium/growth & development , Phylogeny , Plant Proteins/chemistry
15.
Biol Chem ; 402(2): 123-132, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33544474

ABSTRACT

Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, White/metabolism , Inflammation/metabolism , Animals , Humans
16.
Plant Physiol Biochem ; 156: 135-145, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32937268

ABSTRACT

Cinnamate 4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway in plants and is involved in the biosynthesis of secondary metabolites such as lignin and flavonoids. However, the function of C4H in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. By searching pear genome databases, we identified three C4H genes (PbC4H1, PbC4H2 and PbC4H3) encoding proteins that share higher identity with bonafide C4Hs from several species with typical cytochrome P450 domains, suggesting that all three PbC4Hs are also bonafide C4Hs that have close evolutionary relationships with C4Hs from other land plants. Quantitative real-time PCR (qRT-PCR) results indicated that the three PbC4Hs were specifically expressed in one or more tissues. The expression levels of PbC4H1 and PbC4H3 first increased and then decreased during pear fruit development. Treatment with exogenous hormones (ABA, MeJA, and SA) altered the expression of the three PbC4Hs to varying degrees. The expression levels of the PbC4Hs were first induced and then decreased under ABA treatment, while MeJA treatment significantly increased the expression levels of the PbC4Hs. Following treatment with SA, expression levels of PbC4H1 and PbC4H2 increased, while expression levels of PbC4H3 decreased. Enzymatic analysis of the recombinant proteins expressed in yeast indicated that PbC4H1 and PbC4H3 catalysed the conversion of trans-cinnamic acid to p-coumaric acid. Moreover, the expression of PbC4H1 and PbC4H3 in Arabidopsis resulted in an increase in both the lignin content and the thickness of cell walls for intervascular fibres and xylem cells. Taken together, the results of our study not only revealed the potential role of PbC4H1 and PbC4H3 in lignin biosynthesis but also established a foundation for future investigations of the regulation of lignin synthesis and stone cell development in pear fruit by molecular biological techniques.


Subject(s)
Plant Proteins/genetics , Pyrus/enzymology , Trans-Cinnamate 4-Monooxygenase/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/metabolism , Pyrus/genetics , Trans-Cinnamate 4-Monooxygenase/metabolism
17.
Nat Commun ; 11(1): 2303, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385276

ABSTRACT

White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences.


Subject(s)
Adipocytes/metabolism , Fibroblast Growth Factor 1/metabolism , Ion Channels/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Adipogenesis/physiology , Adipose Tissue, White/metabolism , Animals , Calorimetry , Cells, Cultured , Female , Fibroblast Growth Factor 1/genetics , Flow Cytometry , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Insulin/blood , Interleukin-6/blood , Ion Channels/genetics , Male , Mice , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/genetics , Signal Transduction/physiology
19.
J Hazard Mater ; 392: 122326, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32092654

ABSTRACT

Rhodococcus sp. HX-2 could degrade diesel oil in the presence of 1%-10 % NaCl. The compatible solute betaine accumulated in cells with increasing NaCl concentration, and this was found to be the main mechanism of resistance of HX-2 to high salt concentration. Exogenously added betaine can be transported into cells, which improved cell growth and the percentage degradation of diesel oil in the presence of high [NaCl] in solution and in soil. Scanning electron microscopy data suggested that addition of exogenous betaine facilitated salt tolerance by stimulating exopolysaccharide production. Fourier-transform infrared analysis suggested that surface hydroxyl, amide and phosphate groups may be related to tolerance of high-salt environments. Four betaine transporter-encoding genes (H0, H1, H3, H5) and the betaine producer gene betB were induced in Rhodococcus sp. HX-2 by NaCl stress. The maximal induction of H0, H1, H3 and H5 transcription depended on high salinity plus the presence of betaine. These results demonstrate that salt tolerance is mediated by accumulated betaine in Rhodococcus sp. HX-2 cells, and the potential of this strain for application in bioremediation of hydrocarbon pollution in saline environments.


Subject(s)
Betaine/metabolism , Gasoline , Hydrocarbons/metabolism , Rhodococcus/metabolism , Salt Tolerance , Soil Pollutants/metabolism , Bacterial Proteins/genetics , Biodegradation, Environmental , Rhodococcus/genetics , Salinity , Salt Tolerance/genetics
20.
PLoS One ; 15(1): e0226557, 2020.
Article in English | MEDLINE | ID: mdl-31995615

ABSTRACT

In this study, the Pb2+ biosorption potential of live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2 was analyzed. Optimal biosorption conditions were determined via single factor optimization, which were as follows: temperature, 25°C; pH, 5.0, and biosorbent dose, 0.75 g L-1. A response surface software (Design Expert 10.0) was used to analyze optimal biosorption conditions. The biosorption data for live and dead biosorbents were suitable for the Freundlich model at a Pb2+ concentration of 200 mg L-1. At this same concentration, the maximum biosorption capacity was 88.74 mg g-1 (0.428 mmol g-1) for live biosorbents and 125.5 mg g-1 (0.606 mmol g-1) for dead biosorbents. Moreover, in comparison with the pseudo-first-order model, the pseudo-second-order model seemed better to depict the biosorption process. Dead biosorbents seemed to have lower binding strength than live biosorbents, showing a higher desorption capacity at pH 1.0. The order of influence of competitive metal ions on Pb2+ adsorption was Cu2+ > Cd2+ > Ni+. Fourier-transform infrared spectroscopy analyses revealed that several functional groups were involved in the biosorption process of dead biosorbents. Scanning electron microscopy showed that Pb2+ attached to the surface of dead biosorbents more readily than on the surface of live biosorbents, whereas transmission electron microscopy confirmed the transfer of biosorbed Pb2+ into the cells in the case of both live and dead biosorbents. It can thus be concluded that dead biosorbents are better than live biosorbents for Pb2+ biosorption, and they can accordingly be used for wastewater treatment.


Subject(s)
Hydrocarbons/metabolism , Lead/isolation & purification , Lead/metabolism , Rhodococcus/growth & development , Rhodococcus/metabolism , Water/chemistry , Adsorption , Hydrogen-Ion Concentration , Lead/analysis , Rhodococcus/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL