Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(4): 106403, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37063469

ABSTRACT

Electroconductive textile yarns are of particular interest for their use as flexible and wearable sensors without compromising the properties and comfort of usual textiles. However, the detection of fine actions of the human body is quite challenging since it requires both the relatively higher sensitivity and stability of the sensor. Herein, highly sensitive, ultra-stable, and extremely durable piezoresistive wearable sensors were prepared by loading N-doped rGO and polydopamine-coated carbon nanotubes into silicon rubber tube. The wearable sensors thus produced show an excellent ability to sense subtle movement or stimuli with good sensitivity and repeatability. Furthermore, by bending the straight conductive silicon rubber tube (CSRT) into three different patterns, its sensitivity was then dramatically increased. Finally, the CSRT was found capable of sensing cardiorespiratory signals, indicating that the sensor would be an important step toward realizing bio-signal sensing for next-generation personalized health care applications.

2.
ACS Appl Mater Interfaces ; 15(8): 10994-11003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36789744

ABSTRACT

Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.

4.
Chem Commun (Camb) ; 51(69): 13373-6, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26208330

ABSTRACT

The interaction between supercharged green fluorescent protein (ScGFP) and graphene oxide (GO) as well as the resulting quenching effect of GO on ScGFP were investigated. Based on this unique quenching effect and the DNA-mediated ScGFP/GO interaction, a label-free fluorescence method has been established for homogeneously assaying the activity and inhibition of base excision repair enzyme.


Subject(s)
DNA Repair Enzymes/metabolism , DNA/metabolism , Graphite/chemistry , Green Fluorescent Proteins/chemistry , DNA/chemistry , DNA Repair , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/metabolism , Oxides/chemistry , Spectrometry, Fluorescence , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...