Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(27): e2401284, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574258

ABSTRACT

The development of solid-state electrolytes (SSEs) with outstanding comprehensive performance is currently a critical challenge for achieving high energy density and safer solid-state batteries (SSBs). In this study, a strategy of nano-confined in situ solidification is proposed to create a novel category of molten guest-mediated metal-organic frameworks, named MGM-MOFs. By embedding the newly developed molten crystalline organic electrolyte (ML20) into the nanocages of anionic MOF-OH, MGM-MOF-OH, characterized by multi-modal supramolecular interaction sites and continuous negative electrostatic environments within nano-channels, is achieved. These nanochannels promote ion transport through the successive hopping of Li+ between neighbored negative electrostatic environments and suppress anion movement through the chemical constraint of the hydroxyl-functionalized pore wall. This results in remarkable Li+ conductivity of 7.1 × 10-4 S cm-1 and high Li+ transference number of 0.81. Leveraging these advantages, the SSBs assembled with MGM-MOF-OH exhibit impressive cycle stability and a high specific energy density of 410.5 Wh kganode + cathode + electrolyte -1 under constrained conditions and various working temperatures. Unlike flammable traditional MOFs, MGM-MOF-OH demonstrates high robustness under various harsh conditions, including ignition, high voltage, and extended to humidity.

2.
Adv Mater ; 35(39): e2304685, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344893

ABSTRACT

Solid-state batteries (SSBs) hold immense potential for improved energy density and safety compared to traditional batteries. However, existing solid-state electrolytes (SSEs) face challenges in meeting the complex operational requirements of SSBs. This study introduces a novel approach to address this issue by developing a metal-organic framework (MOF) with customized bilayer zwitterionic nanochannels (MOF-BZN) as high-performance SSEs. The BZN consist of a rigid anionic MOF channel with chemically grafted soft multicationic oligomers (MCOs) on the pore wall. This design enables selective superionic conduction, with MCOs restricting the movement of anions while coulombic interaction between MCOs and anionic framework promoting the dissociation of Li+ . MOF-BZN exhibits remarkable Li+ conductivity (8.76 × 10-4 S cm-1 ), high Li+ transference number (0.75), and a wide electrochemical window of up to 4.9 V at 30 °C. Ultimately, the SSB utilizing flame retarded MOF-BZN achieves an impressive specific energy of 419.6 Wh kganode+cathode+electrolyte -1 under constrained conditions of high cathode loading (20.1 mg cm-2 ) and limited lithium metal source. The constructed bilayer zwitterionic MOFs present a pioneering strategy for developing advanced SSEs for highly efficient SSBs.

3.
Angew Chem Int Ed Engl ; 62(25): e202302505, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36992624

ABSTRACT

Although solid-state batteries (SSBs) are high potential in achieving better safety and higher energy density, current solid-state electrolytes (SSEs) cannot fully satisfy the complicated requirements of SSBs. Herein, a covalent organic framework (COF) with multi-cationic molecular chains (COF-MCMC) was developed as an efficient SSE. The MCMCs chemically anchored on COF channels were generated by nano-confined copolymerization of cationic ionic liquid monomers, which can function as Li+ selective gates. The coulombic interaction between MCMCs and anions leads to easier dissociation of Li+ from coordinated states, and thus Li+ transport is accelerated. While the movement of anions is restrained due to the charge interaction, resulting in a high Li+ conductivity of 4.9×10-4  S cm-1 and Li+ transference number of 0.71 at 30 °C. The SSBs with COF-MCMC demonstrate an excellent specific energy density of 403.4 Wh kg-1 with high cathode loading and limited Li metal source.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Electric Conductivity , Cations , Lithium , Electric Power Supplies
4.
ACS Nano ; 15(11): 18363-18373, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34694767

ABSTRACT

Lithium-sulfur batteries (LSBs) are still severely blocked by the shuttle of polysulfides (LiPSs), resulting in low sulfur utilization and decreased lifetime. The optimal design of hosts with tailored porous structures and catalytic sites is expected to address this issue. Herein, a Bi/Bi2O3 heterostructure within the metal-organic framework (MOF)-derived sulfur host with a hierarchical structure was elaborated for both serving as sulfur hosts and promoting the redox reaction kinetics of LiPSs. The shuttle effects of LiPSs can be mitigated by the dual functional Bi/Bi2O3 heterostructure enriched in the outer layer of CAU-17-derived carbonic rods, i.e., the effective redox conversion of LiPSs can be realized at the Bi/Bi2O3 heterointerface by the adsorption of LiPSs over Bi2O3 and subsequently catalytic conversion over Bi. Benefiting from these merits, the fabricated LSBs realized a significantly optimized performance, including a high discharge capacity of 740.8 mAh g-1 after 1000 cycles with an ultralow decay rate of 0.022% per cycle at 1 C, a high areal capacity of 6.6 mAh cm-2 after 100 cycles with a sulfur loading of 8.1 mg cm-2, and good performance in pouch cells as well.

5.
Nanoscale ; 12(13): 6976-6982, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32207474

ABSTRACT

Optimization of solid electrolytes (SEs) is of great significance for lithium-based solid state batteries (SSBs). However, insufficient Li ion transport, deficient interfacial compatibility and formation of lithium dendrites lead to poor cycling performance. Based on Li+ conductive metal-organic frameworks (LCMOFs), herein a multiscale optimization strategy is put forward to facilitate Li+ transport within the MOFs (molecular scale), between the MOFs' boundaries (nanoscale) and across the SE/electrode interface (microscale) in SSBs. LCMOFs are obtained by binding Li+ onto ionogenic chemical groups (-CO2H, -SO3H and -OH) in nanoscale dispersed MOFs. Both experimental results and DFT simulations confirm the key role of ionogenic groups for Li+ transport. Furthermore, benefiting from the optimized interfaces between LCMOF crystals, SEs with excellent electrochemical properties are obtained, including a high ionic conductivity of 1.06 × 10-3 S cm-1 at 25 °C, a wide electrochemical window from 2.0 to 4.5 V, low interfacial resistances and stable Li plating/stripping. The fabricated Li|SE|LiFePO4 SSB exhibits high and stable charge/discharge capacities under wide operation temperatures ranging from -20 to 60 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...