Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Asia Pac Allergy ; 14(1): 39-41, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482457

ABSTRACT

Hyper-immunoglobulin E syndrome (HIES) is a primary immunodeficiency disease characterized by atopic dermatitis, recurrent skin and lung infections, and significantly elevated serum immunoglobulin E levels. Autosomal dominant and loss-of-function pathogenic variants in the STAT3 gene are the most common causes of the disease and studies have shown that the presence of IL-4 receptor (IL-4R) is upregulated in patients with dominant-negative mutations in the STAT3 gene expression. Dupilumab is a monoclonal antibody that targets the IL-4α receptor and improves the symptoms of atopic dermatitis by inhibiting IL-4 and IL-13. We used dupilumab to treat severe dermatitis in a patient with STAT3-HIES and achieved satisfactory results.

2.
Plant Biotechnol J ; 22(7): 2033-2050, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38408119

ABSTRACT

Although forward-genetics-metabolomics methods such as mGWAS and mQTL have proven effective in providing myriad loci affecting metabolite contents, they are somehow constrained by their respective constitutional flaws such as the hidden population structure for GWAS and insufficient recombinant rate for QTL. Here, the combination of mGWAS and mQTL was performed, conveying an improved statistical power to investigate the flavonoid pathways in common wheat. A total of 941 and 289 loci were, respectively, generated from mGWAS and mQTL, within which 13 of them were co-mapped using both approaches. Subsequently, the mGWAS or mQTL outputs alone and their combination were, respectively, utilized to delineate the metabolic routes. Using this approach, we identified two MYB transcription factor encoding genes and five structural genes, and the flavonoid pathway in wheat was accordingly updated. Moreover, we have discovered some rare-activity-exhibiting flavonoid glycosyl- and methyl-transferases, which may possess unique biological significance, and harnessing these novel catalytic capabilities provides potentially new breeding directions. Collectively, we propose our survey illustrates that the forward-genetics-metabolomics approaches including multiple populations with high density markers could be more frequently applied for delineating metabolic pathways in common wheat, which will ultimately contribute to metabolomics-assisted wheat crop improvement.


Subject(s)
Flavonoids , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/enzymology , Flavonoids/metabolism , Quantitative Trait Loci/genetics , Chromosome Mapping , Metabolomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Commun ; 5(5): 100792, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38173227

ABSTRACT

Despite recent advances in crop metabolomics, the genetic control and molecular basis of the wheat kernel metabolome at different developmental stages remain largely unknown. Here, we performed widely targeted metabolite profiling of kernels from three developmental stages (grain-filling kernels [FKs], mature kernels [MKs], and germinating kernels [GKs]) using a population of 159 recombinant inbred lines. We detected 625 annotated metabolites and mapped 3173, 3143, and 2644 metabolite quantitative trait loci (mQTLs) in FKs, MKs, and GKs, respectively. Only 52 mQTLs were mapped at all three stages, indicating the high stage specificity of the wheat kernel metabolome. Four candidate genes were functionally validated by in vitro enzymatic reactions and/or transgenic approaches in wheat, three of which mediated the tricin metabolic pathway. Metabolite flux efficiencies within the tricin pathway were evaluated, and superior candidate haplotypes were identified, comprehensively delineating the tricin metabolism pathway in wheat. Finally, additional wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidate genes identified in this study. Our work provides new information on variations in the wheat kernel metabolome and important molecular resources for improvement of wheat nutritional quality.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Quantitative Trait Loci/genetics , Nutritive Value/genetics , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Metabolome/genetics , Chromosome Mapping , Metabolomics
4.
Sci Total Environ ; 917: 170440, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286280

ABSTRACT

The aim of this work was to study the sublethal effects, biokinetics, subcellular partitioning and detoxification of arsenic in two native Chinses species, Bellamya quadrata and Cipangopaludina cathayensis, as well as an exotic South American species, Pomacea canaliculata. The exotic species exhibited higher tolerance than native species. Physiologically based pharmacokinetic model results showed that the exotic species P. canaliculata exhibited a lower bioaccumulation rate and a greater metabolism capacity of As. Subcellular partitioning of As revealed that P. canaliculata exhibits superior As tolerance compared to the native species B. quadrata and C. cathayensis. This is attributed to P. canaliculata effective management of the metal sensitive fraction and enhanced accumulation of As in the biologically detoxified metal fraction. Under As stress, the biochemical parameters (superoxide dismutase, malondialdehyde, glutathione and glutathione S-transferase) of the exotic species P. canaliculata changed less in the native species, and they returned to normal levels at the end of depuration period. Our study provides evidence of the superior survival capability of the exotic species P. canaliculata compared to the native species B. quadrata and C. cathayensis under environmentally relevant levels of As contamination.


Subject(s)
Arsenic , Snails , Animals , Snails/physiology , Arsenic/toxicity , Arsenic/metabolism
5.
Plant Cell ; 36(3): 540-558, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-37956052

ABSTRACT

The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Triticum/metabolism , Metabolomics , Phenotype , Metabolic Networks and Pathways/genetics
6.
Nucleic Acids Res ; 52(D1): D1579-D1587, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37819039

ABSTRACT

The Plant Metabolome Hub (PMhub), available at https://pmhub.org.cn, is a valuable resource designed to provide scientists with comprehensive information on plant metabolites. It offers extensive details about their reference spectra, genetic foundations, chemical reactions, metabolic pathways and biological functions. The PMhub contains chemical data for 188 837 plant metabolites gathered from various sources, with 1 467 041 standard/in-silico high-resolution tandem mass-spectrometry (HRMS/MS) spectra corresponding to these metabolites. Beyond its extensive literature-derived data, PMhub also boasts a sizable collection of experimental metabolites; it contains 144 366 detected features in 10 typical plant species, with 16 423 successfully annotated by using standard/in-silico HRMS/MS data, this collection is further supplemented with thousands of features gathered from reference metabolites. For each metabolite, the PMhub enables the reconstructed of a simulated network based on structural similarities and existing metabolic pathways. Unlike previous plant-specific metabolome databases, PMhub not only contains a vast amount of metabolic data but also assembles the corresponding genomic and/or transcriptomic information, incorporating multiple methods for the comprehensive genetic analysis of metabolites. To validate the practicality, we verified a synthetic pathway for N-p-coumaroyltyramine by in vitro enzymatic activity experiments. In summary, the robust functionality provided by the PMhub will make it an indispensable tool for studying plant metabolomics.


Subject(s)
Databases, Factual , Metabolome , Plants , Metabolic Networks and Pathways , Metabolome/genetics , Metabolomics/methods , Tandem Mass Spectrometry , Plants/chemistry , Plants/metabolism
7.
Biomolecules ; 13(9)2023 09 19.
Article in English | MEDLINE | ID: mdl-37759813

ABSTRACT

Plant extracellular vesicles (P-EVs) are considered promising functional food ingredients due to their various health benefits. In this study, blueberry extracellular vesicles (B-EVs) were collected and purified by size exclusion chromatography (SEC). The chemical compounds in B-EV extracts were analyzed by LC-MS/MS. In addition, the stability of B-EVs was evaluated during short- and long-term storage, heating, and in vitro digestion. The results showed that the B-EVs had a desirable particle size (88.2 ± 7.7 nm). Protein and total RNA concentrations were 582 ± 11.2 µg/mL and 15.4 µg/mL, respectively. The optimal storage temperatures for B-EVs were 4 °C and -80 °C for short- and long-term storage, respectively. Fluorescent labeling and qRT-PCR tests showed that B-EVs could be specifically internalized by Caco-2 cells, whereas virtually no cytotoxic or growth-inhibitory effects were observed. B-EVs down-regulated the expression levels of IL-1ß and IL-8 and up-regulated the expression levels of NF-κß and TLR5 in Caco-2 cells. Overall, the results proved that the intact structure of B-EVs could be preserved during food storage and processing conditions. B-EVs had the ability to reach the human intestine through oral delivery. Moreover, they could be absorbed by intestinal cells and affect human intestinal function.


Subject(s)
Blueberry Plants , Extracellular Vesicles , Humans , Caco-2 Cells , Chromatography, Liquid , Tandem Mass Spectrometry , Intestines
8.
J Pineal Res ; 74(2): e12841, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36396897

ABSTRACT

Melatonin (Mel) is a multifunctional biomolecule found in both animals and plants. In plants, the biosynthesis of Mel from tryptophan (Trp) has been delineated to comprise of four consecutive reactions. However, while the genes encoding these enzymes in rice are well characterized no systematic evaluation of the overall pathway has, as yet, been published for wheat. In the current study, the relative contents of six Mel-pathway-intermediates including Trp, tryptamine (Trm), serotonin (Ser), 5-methoxy tryptamine (5M-Trm), N-acetyl serotonin (NAS) and Mel, were determined in 24 independent tissues spanning the lifetime of wheat. These studies indicated that Trp was the most abundant among the six metabolites, followed by Trm and Ser. Next, the candidate genes expressing key enzymes involved in the Mel pathway were explored by means of metabolite-based genome-wide association study (mGWAS), wherein two TDC genes, a T5H gene and one SNAT gene were identified as being important for the accumulation of Mel pathway metabolites. Moreover, a 463-bp insertion within the T5H gene was discovered that may be responsible for variation in Ser content. Finally, a ASMT gene was found via sequence alignment against its rice homolog. Validations of these candidate genes were performed by in vitro enzymatic reactions using proteins purified following recombinant expression in Escherichia coli, transient gene expression in tobacco, and transgenic approaches in wheat. Our results thus provide the first comprehensive investigation into the Mel pathway metabolites, and a swift candidate gene identification via forward-genetics strategies, in common wheat.


Subject(s)
Melatonin , Animals , Melatonin/metabolism , Triticum/genetics , Triticum/metabolism , Serotonin/metabolism , Genome-Wide Association Study , Tryptamines , Plants/metabolism , Tryptophan/metabolism
9.
Comput Struct Biotechnol J ; 20: 5085-5097, 2022.
Article in English | MEDLINE | ID: mdl-36187931

ABSTRACT

LC-MS/MS is a major analytical platform for metabolomics, which has become a recent hotspot in the research fields of life and environmental sciences. By contrast, structure elucidation of small molecules based on LC-MS/MS data remains a major challenge in the chemical and biological interpretation of untargeted metabolomics datasets. In recent years, several strategies for structure elucidation using LC-MS/MS data from complex biological samples have been proposed, these strategies can be simply categorized into two types, one based on structure annotation of mass spectra and for the other on retention time prediction. These strategies have helped many scientists conduct research in metabolite-related fields and are indispensable for the development of future tools. Here, we summarized the characteristics of the current tools and strategies for structure elucidation of small molecules based on LC-MS/MS data, and further discussed the directions and perspectives to improve the power of the tools or strategies for structure elucidation.

10.
Mol Plant ; 15(8): 1367-1383, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35808829

ABSTRACT

Foxtail millet (Setaria italica), which was domesticated from the wild species green foxtail (Setaria viridis), is a rich source of phytonutrients for humans. To evaluate how breeding changed the metabolome of foxtail millet grains, we generated and analyzed the datasets encompassing the genomes, transcriptomes, metabolomes, and anti-inflammatory indices from 398 foxtail millet accessions. We identified hundreds of common variants that influence numerous secondary metabolites. We observed tremendous differences in natural variations of the metabolites and their underlying genetic architectures between distinct sub-groups of foxtail millet. Furthermore, we found that the selection of the gene alleles associated with yellow grains led to altered profiles of metabolites such as carotenoids and endogenous phytohormones. Using CRISPR-mediated genome editing we validated the function of PHYTOENE SYNTHASE 1 (PSY1) gene in affecting millet grain color and quality. Interestingly, our in vitro cell inflammation assays showed that 83 metabolites in millet grains have anti-inflammatory effects. Taken together, our multi-omics study illustrates how the breeding history of foxtail millet has shaped its metabolite profile. The datasets we generated in this study also provide important resources for further understanding how millet grain quality is affected by different metabolites, laying the foundations for future millet genetic research and metabolome-assisted improvement.


Subject(s)
Setaria Plant , Domestication , Genomics , Humans , Phenotype , Plant Breeding , Setaria Plant/genetics , Setaria Plant/metabolism
11.
Hum Gene Ther ; 33(11-12): 625-637, 2022 06.
Article in English | MEDLINE | ID: mdl-35171714

ABSTRACT

Hair follicle stem cells (HFSCs) are responsible for hair growth and hair follicle regeneration. MicroRNAs have been demonstrated to be involved in the differentiation of HFSCs. Thus, this study aimed to explore the potential role of miR-149 in the differentiation of HFSCs. The isolated HFSCs were identified by flow cytometric sorting. miR-149 expression was determined during differentiation of HFSCs. Gain- and loss-of-function approaches were conducted to explore the roles of miR-149, MAPK1/ERK2, and FGF2/c-MYC in colony formation and proliferation of HFSCs. Furthermore, in vivo assays were undertaken in miR-149 knockout mice to confirm their roles in HFSC differentiation. miR-149 was found to be downregulated during HFSC differentiation, and overexpressed miR-149 restricted the proliferation and differentiation of HFSCs. miR-149 was confirmed to target and inhibit MAPK1/ERK2, which was highly expressed in and positively associated with HFSC differentiation. The MAPK1/ERK2 promotion in HFSC differentiation was achieved by augmenting expression of FGF2 and c-MYC. The in vitro effects of miR-149 were validated in in vivo experiments. Taken together, upregulated miR-149 restricted HFSC differentiation and hair growth by targeting MAPK1/ERK2 to reduce expression of FGF2 and c-MYC, which sheds light on the underlying molecular mechanism of hair growth.


Subject(s)
Hair Follicle , MicroRNAs , Animals , Cell Differentiation/genetics , Fibroblast Growth Factor 2 , Hair Follicle/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells
12.
Sci Total Environ ; 769: 144676, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33485194

ABSTRACT

Perchlorate and hexavalent chromium (Cr(VI)) are common cocontaminants in aquatic environments due to their high water solubility, stability, mobility, and some coapplications. However, few studies have investigated their combined toxicity to organisms. In this work, we studied the acute and chronic toxicities of perchlorate and Cr(VI), alone and in combination, with survival, growth, and reproduction as endpoints using Daphnia carinata as a model organism. For a single contaminant, Cr(VI) was found to be more toxic than perchlorate to D. carinata not only in terms of survival but also in terms of growth and reproduction. In regard to the combined pattern, the interactive effects on survival, growth, and reproduction were mainly additivity, antagonism, and synergism, respectively, suggesting that the interactive response of perchlorate and Cr(VI) is endpoint-specific. Due to significant synergism, over 21 days of observation, the inhibition of 0.1 mg/L perchlorate and 0.2 mg/L Cr(VI) on cumulative offspring per female in the first seven broods reached 63.9 ± 3.6%, suggesting that long-term exposure to perchlorate and Cr(VI) at environmentally relevant concentrations may affect D. carinata reproduction in the natural environment. Our results will be significant for understanding the complicated combined toxicity of perchlorate and Cr to aquatic organisms.


Subject(s)
Daphnia , Perchlorates , Animals , Chromium/toxicity , Female , Perchlorates/toxicity , Reproduction
13.
Life Sci ; 274: 118303, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-32841663

ABSTRACT

AIMS: The purpose of this study was to explore the precise role and mechanism of p38 inhibiting cutaneous squamous cell carcinoma associated lincRNA (PICSAR) in CSCC. MATERIALS AND METHODS: The expression levels of PICSAR, microRNA-125b (miR-125b) and yes-associated protein1 (YAP1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis and invasion were evaluated by Cell Counting Kit-8 (CCK-8) assay, flow cytometry, transwell assay, respectively. The interaction between miR-125b and PICSAR or YAP1 was predicted by bioinformatics software and confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Western blot was employed to detect the protein expression of YAP1. The mice xenograft model was established to investigate the role of PICSAR in vivo. KEY FINDINGS: PICSAR was upregulated in CSCC tissues and cells. PICSAR knockdown inhibited cell proliferation and invasion and induced apoptosis in CSCC cells. Moreover, miR-125b could directly bind to PICSAR and its inhibition reversed the effect of PICSAR knockdown on proliferation, invasion and apoptosis in CSCC cells. In addition, YAP1 was a direct target of miR-125b and its overexpression attenuated the anti-cancer role of miR-125b in CSCC cells. Furthermore, YAP1 expression was positively regulated by PICSAR and negatively regulated by miR-125b. Besides, interference of PICSAR suppressed tumor growth by upregulating miR-125b and downregulating YAP1. SIGNIFICANCE: PICSAR knockdown suppressed cell proliferation and invasion and promoted apoptosis in CSCC cells by regulating miR-125b/YAP1 axis, providing new sights for treatment of CSCC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Skin Neoplasms/pathology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Movement , Cell Proliferation , Disease Progression , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcription Factors/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , YAP-Signaling Proteins
14.
Chemosphere ; 262: 127718, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32763573

ABSTRACT

A soil microcosm experiment was carried out to quantify the transfer of cadmium (Cd) and lead (Pb) in a multi-species soil system (MS·3). Red earth from Jiangxi (S1), fluvo-aquic soil from Henan (S2), fluvo-aquic soil from Beijing (S3), and black soil from Heilongjiang (S4) were used for soil column packing with S1, S3, or S4 as the 20-50 cm layer and S2, which was Cd- and Pb-contaminated, as the top 0-20 cm layer. For each soil combination, four treatments were set up: CK (no wheat and no earthworm), W (only wheat), E (only earthworm), and E + W (earthworm and wheat). The results showed that the coexistence of earthworm with wheat reduced Cd and Pb contents in wheat plants and earthworms, and increased plant biomass, but had no significant effect on the survival rate and mean weight change rate of earthworms. Total Cd and Pb decreased remarkably in the 0-20 cm layer while increased in the 20-50 cm layer, and approximately 32.8%-51.1% of Cd and 0.35%-7.0% of Pb migrated down into the 20-50 cm soil layers from the 0-20 cm soil layers. The migration varied between the treatments from S2 to S1, S2, and S3. In S2-S1 and S2-S4 columns, the amount of Cd migration decreased when the earthworms coexisted with wheat, while in S2-S3 column, there was no significant difference on such amount regardless of the coexistence of earthworms with wheat. Taken together, the results indicated that the migration of Cd and Pb was not only associated with wheat and earthworm, but also depended on soil types.


Subject(s)
Cadmium/analysis , Lead/analysis , Oligochaeta/chemistry , Soil Pollutants/analysis , Triticum/chemistry , Animals , Beijing , Bioaccumulation , Cadmium/pharmacokinetics , Lead/pharmacokinetics , Oligochaeta/drug effects , Oligochaeta/metabolism , Soil/chemistry , Soil Pollutants/pharmacokinetics , Triticum/drug effects , Triticum/metabolism
15.
Ecotoxicol Environ Saf ; 206: 111184, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32861009

ABSTRACT

The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.


Subject(s)
Charcoal/chemistry , Chromium/analysis , Ipomoea/drug effects , Selenium/pharmacology , Soil Pollutants/analysis , Biological Transport , Biomass , Chromium/metabolism , Ipomoea/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Selenium/metabolism , Soil/chemistry , Soil Pollutants/metabolism
16.
Aging (Albany NY) ; 12(13): 12726-12739, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32657761

ABSTRACT

Hair follicle stem cells (HFSCs) contribute to the regeneration of hair follicles (HFs), thus accelerating hair growth. microRNAs (miRs) are potential regulators in various cellular processes, including HFSC proliferation and differentiation. This study proposed a potential target, enhancer of zeste homolog 2 (EZH2) for facilitating hair growth, due to its function over HFSC activities by mediating the miR-22/serine/threonine kinase 40 (STK40)/myocyte enhancer factor 2 (MEF2)/alkaline phosphatase (ALP) axis. Gain- and loss-of-function approaches were adopted to explore the roles of EZH2, miR-22, and STK40 in the proliferation and apoptosis of HFSCs, along with the functional relevance of MEF2-ALP activity. STK40 was elevated during HFSC differentiation, which was found to facilitate HFSC proliferation, but impede their apoptosis by activating MEF2-ALP. Mechanically, miR-22 targeted and inversely regulated STK40, which inhibited MEF2-ALP activity to impede HFSC proliferation and differentiation. Moreover, EZH2 elevated the STK40 expression by repressing miR-22 to promote the proliferation and differentiation of HFSCs. Furthermore, in vivo experiments further validated the roles of EZH2 and STK40 on hair follicle neogenesis and hair growth. Collectively, EZH2 elevated the STK40 expression by downregulating miR-22, consequently accelerating differentiation of HFSCs and hair growth, which sheds light on the underlying molecular mechanism responsible for hair growth.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Hair Follicle/cytology , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Enhancer of Zeste Homolog 2 Protein/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Stem Cells/metabolism
17.
Physiol Mol Biol Plants ; 26(6): 1127-1137, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549678

ABSTRACT

Tea plants (Camellia sinensis O. Kuntze) can hyperaccumulate fluoride (F) in leaves. Although, aluminum (Al) can alleviate F toxicity in C. sinensis, the mechanisms driving this process remain unclear. Here, we measured root length, root activity, soluble proteins content, and levels of peroxidase, superoxide dismutase, catalase, malondialdehyde (MDA), and chlorophyll in tea leaves after treatment with different F concentrations. In addition, we focused on the content of organic acids, the gene transcription of malate dehydrogenase (MDH), glycolate oxidase (GO) and citrate synthase (CS) and the relative enzyme activity involved in the tolerance to F in C. sinensis. We also examined the role of Al in this process by analyzing the content of these physiological indicators in tea leaves treated with F and Al. Our results demonstrate that increased MDA content, together with decreased chlorophyll content and soluble proteins are responsible for oxidative damage and metabolism inhibition at high F concentration. Moreover, increased antioxidant enzymes activity regulates ROS damage to protect tea leaves during F stress. Furthermore, exogenous Al alleviated F stress in tea leaves through the regulation of MDA content and antioxidant enzymes activity. In addition, organic acids in exudate stimulated root growth in tea plants exposed to low F concentrations are regulated by MDH, GO, and CS. In addition, Al can stimulate the exudation of organic acids, and may participate in regulating rhizosphere pH of the roots through the interaction with F, eventually leading to the response to F stress in C. sinensis.

18.
Environ Sci Pollut Res Int ; 27(6): 6312-6325, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865563

ABSTRACT

Pot experiment was conducted to evaluate the effect of two types of biochar (2% (w/w)), Pennisetum sinese Roxb biochar (PB) and coffee grounds biochar (CB), combined with iron fertilizer (1.3 g kg-1 Fe) on the growth, quality, Cd/Pb accumulation in watercress, soil physicochemical properties, soil fertility, soil enzyme activities, and fraction distribution of Cd/Pb in soil. The results showed that the two types of biochar combined with iron fertilizer (BC-Fe) amendments could increase the shoot height, root length, plant biomass, soluble sugar and soluble protein of watercress, soil pH value, soil organic matter (SOM), ammonium nitrogen (NH4+-N), available phosphorus, and available potassium. CB-Fe amendment enhanced soil urease, sucrose, and catalase activities, while PB-Fe amendment only enhanced soil urease activity among the three enzymes. The two BC-Fe amendments decreased exchangeable-Cd/Pb and reducible-Cd/Pb concentrations, while enhanced oxidizable-Cd/Pb and residual-Cd/Pb concentrations. Furthermore, the two BC-Fe amendments decreased significantly Cd and Pb accumulation in watercress root and shoot. The reduction rate for Cd and Pb in shoot by 42.9%, 20.0%, and 68.2%, 58.4% under PB-Fe and by 38.1%, 20%, and 62.5%, 48.8% under CB-Fe, respectively, for the first crop and the second crop. In conclusion, BC-Fe amendment could improve soil physicochemical properties and soil fertility, promote Cd and Pb transfer to the stable form, thus, reduce the bioavailability and mobility of Cd and Pb, and further, decrease Cd and Pb ecotoxicity and its accumulation in watercress and improve watercress quality.


Subject(s)
Cadmium/metabolism , Lead/metabolism , Nasturtium/physiology , Soil Pollutants/metabolism , Cadmium/analysis , Charcoal/chemistry , Iron , Lead/analysis , Oryza , Soil , Soil Pollutants/analysis
19.
J Environ Sci (China) ; 87: 82-92, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31791520

ABSTRACT

Pot experiments were conducted to evaluate the effect of water management, namely continuous flooding (CF), intermittent flooding (IF) and non-flooding (NF), on Cd phytoavailaility in three paddy soils that differed in pH and in Cd concentrations. Diffusive gradients in thin films (DGT) technique was employed to monitor soil labile Cd and Fe concentrations simultaneously at three growth stages (tillering, heading and mature stage) of rice. The Cd phytoavailability were generally in the order of NF > IF > CF, and higher rice Cd (over permitted level, 0.2 mg/kg) were only found in neutral and acidic soils under NF conditions. DGT measured soil labile Cd rather than total Cd was the most reliable predictor for Cd accumulation in rice. CF enhanced the formation of root plaques, which related to oxidation of large quantities of available Fe on root surfaces due to the O2 secretion of rice root. The Cd concentration in root plaques shared the same trend with DGT-Cd. Generally, root plaques would inhibit Cd uptake by rice under CF conditions, while under IF and NF conditions, root plaques act as a temporarily store of Cd, and soil labile Cd is the key factor that controls the transfer of Cd from soil to rice. The results of principle component analysis revealed that water management had the greatest effect on soil Cd lability and rice Cd in acidic soil. Thus, it is important to consider the availability of Cd and soil pH when assessing current agricultural practices of contaminated soil in China.


Subject(s)
Cadmium/analysis , Oryza , Rhizosphere , Soil Pollutants/analysis , Agriculture , China , Hydrogen-Ion Concentration
20.
Eur J Pharmacol ; 862: 172659, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31518563

ABSTRACT

MicroRNAs (miRNAs) have been widely accepted to play important roles in the regulation of keratinocyte functions. Here, we aimed to further explore the role and underlying mechanism of miR-125b-5p and miR-181b-5p in psoriasis. The expression levels of miR-125b-5p, miR-181b-5p and Akt3 mRNA were detected by qRT-PCR assay. Cell proliferation ability was determined by MTT assay and BrdU incorporation assay. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were used to confirm the targeted interaction between miR-125b-5p or miR-181b-5p and Akt3 in human epidermal keratinocytes (HEKs). The levels of ki-67, Akt3 protein, Akt, p-Akt, mTOR and p-mTOR were measured by Western blot. Our study indicated that miR-125b-5p and miR-181b-5p were downregulated (about 61.3% with miR-125b-5p and 60.4% with miR-181b-5p) and Akt3 was upregulated (about 2.68-fold) in psoriasis. Upregulation of miR-125b-5p or miR-181b-5p resulted in about a 33% or 40% reduction of HEKs proliferation in vitro, while Akt3 overexpression triggered a 1.3-fold enhancement on HEKs proliferation. Akt3 was a direct target of miR-125b-5p or miR-181b-5p. Moreover, HEKs proliferation ability in cotransfection of miR-125b-5p mimics (or miR-181-5p mimics) and vector-Akt3 group was about 2-fold (or 1.98-fold) that in the miR-125b-5p mimics (or miR-181-5p mimics) alone group. Akt/mTOR signaling was involved in miR-125b-5p mimics- or miR-181b-5p mimics-mediated inhibition effect on HEKs proliferation. Our study suggested that the upregulation of miR-125b-5p or miR-181b-5p inhibited HEKs proliferation at least partly by targeting Akt3, providing novel mechanisms of miRNAs involved in psoriasis.


Subject(s)
Cell Proliferation/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/genetics , Psoriasis/genetics , Antagomirs/pharmacology , Biopsy , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation , Healthy Volunteers , Humans , Keratinocytes , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Skin/cytology , Skin/pathology , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...