Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(3): 109121, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38524370

ABSTRACT

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

2.
Sci Rep ; 13(1): 19118, 2023 11 05.
Article in English | MEDLINE | ID: mdl-37926704

ABSTRACT

Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.


Subject(s)
DNA Methylation , Liver , Mice , Animals , Liver/metabolism , Muscle, Skeletal/metabolism , Epigenesis, Genetic , Muscle Proteins/metabolism , DNA/metabolism
3.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960452

ABSTRACT

Laser altimetry data from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) contain a lot of noise, which necessitates the requirement for a signal photon extraction method. In this study, we propose a density clustering method, which combines slope and elevation information from optical stereo images and adaptively adjusts the neighborhood search direction in the along-track direction. The local classification density threshold was calculated adaptively according to the uneven spatial distribution of noise and signal density, and reliable surface signal points were extracted. The performance of the algorithm was validated for strong and weak beam laser altimetry data using optical stereo images with different resolutions and positioning accuracies. The results were compared qualitatively and quantitatively with those obtained using the ATL08 algorithm. The signal extraction quality was better than that of the ATL08 algorithm for steep slope and low signal-to-noise ratio (SNR) regions. The proposed method can better balance the relationship between recall and precision, and its F1-score was higher than that of the ATL08 algorithm. The method can accurately extract continuous and reliable surface signals for both strong and weak beams among different terrains and land cover types.

4.
Sensors (Basel) ; 23(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37420935

ABSTRACT

The complex backgrounds of satellite videos and serious interference from noise and pseudo-motion targets make it difficult to detect and track moving vehicles. Recently, researchers have proposed road-based constraints to remove background interference and achieve highly accurate detection and tracking. However, existing methods for constructing road constraints suffer from poor stability, low arithmetic performance, leakage, and error detection. In response, this study proposes a method for detecting and tracking moving vehicles in satellite videos based on the constraints from spatiotemporal characteristics (DTSTC), fusing road masks from the spatial domain with motion heat maps from the temporal domain. The detection precision is enhanced by increasing the contrast in the constrained area to accurately detect moving vehicles. Vehicle tracking is achieved by completing an inter-frame vehicle association using position and historical movement information. The method was tested at various stages, and the results show that the proposed method outperformed the traditional method in constructing constraints, correct detection rate, false detection rate, and missed detection rate. The tracking phase performed well in identity retention capability and tracking accuracy. Therefore, DTSTC is robust for detecting moving vehicles in satellite videos.


Subject(s)
Movement , Motion
5.
Nature ; 618(7965): 484-488, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198492

ABSTRACT

Spider pulsars are millisecond pulsars in short-period (≲12-h) orbits with low-mass (~0.01-0.4 M⊙) companion stars. The pulsars ablate plasma from the companion star, causing time delays and eclipses of the radio emission from the pulsar. The magnetic field of the companion has been proposed to strongly influence both the evolution of the binary system1 and the eclipse properties of the pulsar emission2. Changes in the rotation measure (RM) have been seen in a spider system, implying that there is an increase in the magnetic field near the eclipse3. Here we report a diverse range of evidence for a highly magnetized environment in the spider system PSR B1744 - 24A4, located in the globular cluster Terzan 5. We observe semi-regular profile changes to the circular polarization, V, when the pulsar emission passes close to the companion. This suggests that there is Faraday conversion where the radio wave tracks a reversal in the parallel magnetic field and constrains the companion magnetic field, B (> 10 G). We also see irregular, fast changes in the RM at random orbital phases, implying that the magnetic strength of the stellar wind, B, is greater than 10 mG. There are similarities between the unusual polarization behaviour of PSR B1744 - 24A and some repeating fast radio bursts (FRBs)5-7. Together with the possible binary-produced long-term periodicity of two active repeating FRBs8,9, and the discovery of a nearby FRB in a globular cluster10, where pulsar binaries are common, these similarities suggest that a proportion of FRBs have binary companions.

6.
Sci Rep ; 12(1): 13719, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962137

ABSTRACT

Metabolic regulation in skeletal muscle is essential for blood glucose homeostasis. Obesity causes insulin resistance in skeletal muscle, leading to hyperglycemia and type 2 diabetes. In this study, we performed multiomic analysis of the skeletal muscle of wild-type (WT) and leptin-deficient obese (ob/ob) mice, and constructed regulatory transomic networks for metabolism after oral glucose administration. Our network revealed that metabolic regulation by glucose-responsive metabolites had a major effect on WT mice, especially carbohydrate metabolic pathways. By contrast, in ob/ob mice, much of the metabolic regulation by glucose-responsive metabolites was lost and metabolic regulation by glucose-responsive genes was largely increased, especially in carbohydrate and lipid metabolic pathways. We present some characteristic metabolic regulatory pathways found in central carbon, branched amino acids, and ketone body metabolism. Our transomic analysis will provide insights into how skeletal muscle responds to changes in blood glucose and how it fails to respond in obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin Resistance/physiology , Leptin/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/metabolism
7.
Front Bioeng Biotechnol ; 8: 1035, 2020.
Article in English | MEDLINE | ID: mdl-32984291

ABSTRACT

Microalgae is a promising organism as the feedstock of the next generation biofuels, as well as high value nature products, such as astaxanthin, normally under certain stress cultivation conditions. With the clear industrialization targets, there have been two waves of microalgae R&D from the last century and showed obvious energy-driven trends. The overall R&D came into a valley now, however, the promising is still there. So here, from the industrialization point of view, the patent evolution concerning the microalgae for biofuels in the second wave were reviewed and summarized. These technology information will help the scientists to join together with industry to drive the next boost.

8.
Nature ; 557(7706): 522-525, 2018 05.
Article in English | MEDLINE | ID: mdl-29795253

ABSTRACT

Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

SELECTION OF CITATIONS
SEARCH DETAIL
...