Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomech ; 165: 112016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422775

ABSTRACT

Individuals with diabetes are at a higher risk of developing foot ulcers. To better understand internal soft tissue loading and potential treatment options, subject-specific finite element (FE) foot models have been used. However, existing models typically lack subject-specific soft tissue material properties and only utilize subject-specific anatomy. Therefore, this study determined subject-specific hindfoot soft tissue material properties from one non-diabetic and one diabetic subject using inverse FE analysis. Each subject underwent cyclic MRI experiments to simulate physiological gait and to obtain compressive force and three-dimensional soft tissue imaging data at 16 phases along the loading-unloading cycles. The FE models consisted of rigid bones and nearly-incompressible first-order Ogden hyperelastic skin, fat, and muscle (resulting in six independent material parameters). Then, calcaneus and loading platen kinematics were computed from imaging data and prescribed to the FE model. Two analyses were performed for each subject. First, the skin, fat, and muscle layers were lumped into a single generic soft tissue material and optimized to the platen force. Second, the skin, fat, and muscle material properties were individually determined by simultaneously optimizing for platen force, muscle vertical displacement, and skin mediolateral bulging. Our results indicated that compared to the individual without diabetes, the individual with diabetes had stiffer generic soft tissue behavior at high strain and that the only substantially stiffer multi-material layer was fat tissue. Thus, we suggest that this protocol serves as a guideline for exploring differences in non-diabetic and diabetic soft tissue material properties in a larger population.


Subject(s)
Diabetes Mellitus , Heel , Humans , Heel/physiology , Finite Element Analysis , Elasticity , Foot , Biomechanical Phenomena , Stress, Mechanical , Models, Biological
2.
J Mech Behav Biomed Mater ; 150: 106309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38088009

ABSTRACT

Full-contact insoles fabricated from multilayer foams are the standard of care (SoC) for offloading and redistributing high plantar pressures in individuals with diabetes at risk of plantar ulceration and subsequent lower limb amputation. These devices have regional variations in total thickness and layer thickness to create conformity with a patient's foot. Recent work has demonstrated that metamaterials can be tuned to match the mechanical properties of SoC insole foams. However, for devices fabricated using a multilayer lattice structure, having regional variations in total thickness and layer thickness may result in regional differences in mechanical properties that have yet to be investigated. Three lattices, two dual-layer and one uniform-layer lattice structure, designed to model the mechanical properties of SoC insoles, were 3D-printed at three structure/puck thicknesses representing typical regions seen in accommodative insoles. The pucks underwent cyclic compression testing, and the stiffness profiles were assessed. Three pucks at three structure/puck thicknesses fabricated from SoC foams were also tested. Initial evaluations suggested that for the latticed pucks, structure thickness and density inversely impacted puck stiffness. Behaving most like the SoC pucks, a dual-layer lattice that increased in density as structure thickness increased demonstrated consistent stiffness profiles across puck thicknesses. Identifying a lattice with constant mechanical properties at various structure thicknesses may be important to produce a conforming insole that emulates the standard of care from which patient-specific/regional lattice modulations can be made.


Subject(s)
Foot Orthoses , Humans , Equipment Design , Foot , Lower Extremity , Printing, Three-Dimensional
3.
Sci Rep ; 13(1): 16776, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798383

ABSTRACT

In many biomechanical analyses, the forces acting on a body during dynamic and static activities are often simplified as point loads. However, it is usually more accurate to characterize these forces as distributed loads, varying in magnitude and direction, over a given contact area. Evaluating these pressure distributions while they are applied to different parts of the body can provide effective insights for clinicians and researchers when studying health and disease conditions, for example when investigating the biomechanical factors that may lead to plantar ulceration in diabetic foot disease. At present, most processing and analysis for pressure data is performed using proprietary software, limiting reproducibility, transparency, and consistency across different studies. This paper describes an open-source software package, 'pressuRe', which is built in the freely available R statistical computing environment and is designed to process, analyze, and visualize pressure data collected on a range of different hardware systems in a standardized manner. We demonstrate the use of the package on pressure dataset from patients with diabetic foot disease, comparing pressure variables between those with longer and shorter durations of the disease. The results matched closely with those from commercially available software, and individuals with longer duration of diabetes were found to have higher forefoot pressures than those with shorter duration. By utilizing R's powerful and openly available tools for statistical analysis and user customization, this package may be a useful tool for researchers and clinicians studying plantar pressures and other pressure sensor array based biomechanical measurements. With regular updates intended, this package allows for continued improvement and we welcome feedback and future contributions to extend its scope. In this article, we detail the package's features and functionality.


Subject(s)
Diabetic Foot , Humans , Reproducibility of Results , Foot , Pressure , Biomechanical Phenomena
4.
J Biomech ; 151: 111531, 2023 04.
Article in English | MEDLINE | ID: mdl-36924529

ABSTRACT

The plantar aponeurosis functions to support the foot arch during weight bearing. Accurate anatomy and material properties are critical in developing analytical and computational models of this tissue. We determined the cross-sectional areas and material properties of four regions of the plantar aponeurosis: the proximal middle and distal middle portions of the tissue and the medial (to the first ray) and lateral (to the fifth ray) regions. Bone-plantar aponeurosis-bone specimens were harvested from fifteen cadaveric feet. Cross-sectional areas were measured using molding, casting, and sectioning methods. Mechanical testing was performed using displacement control triangle waves (0.5, 1, 2, 5, and 10 Hz) loaded to physiologic tension by estimating from body weight and area ratio of the region. Five specimens were tested for each region. Regional deformations were recorded by a high-speed video camera. There were overall differences in cross-sectional areas and biomechanical behavior across regions. The stress-strain responses are non-linear and mainly elastic (energy loss 3.6% to 7.2%). Moduli at the proximal middle and distal middle regions (400 and 522 MPa) were significantly higher than the medial and lateral regions (225 and 242 MPa). The effect of frequency on biomechanical outcomes was small (e.g., 3.5% change in modulus), except for energy loss (107% increase as frequency increased from 0.5 to 10 Hz). These results indicate that the plantar aponeurosis tensile response is non-linear, nearly elastic, and frequency independent. The cross-sectional area and material properties differ by region, and we suggest that such differences be included to accurately model this structure.


Subject(s)
Aponeurosis , Foot , Humans , Foot/physiology , Weight-Bearing/physiology , Bone and Bones , Models, Biological , Biomechanical Phenomena
5.
J Exp Biol ; 225(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35543020

ABSTRACT

Suction feeding in ray-finned fishes involves powerful buccal cavity expansion to accelerate water and food into the mouth. Previous XROMM studies in largemouth bass (Micropterus salmoides), bluegill sunfish (Lepomis macrochirus) and channel catfish (Ictalurus punctatus) have shown that more than 90% of suction power in high performance strikes comes from the axial musculature. Thus, the shape of the axial muscles and skeleton may affect suction feeding mechanics. Royal knifefish (Chitala blanci) have an unusual postcranial morphology, with a ventrally flexed vertebral column and relatively large mass of epaxial muscle. Based on their body shape, we hypothesized that royal knifefish would generate high power strikes by utilizing large neurocranial elevation, vertebral column extension and epaxial shortening. As predicted, C. blanci generated high suction expansion power compared with the other three species studied to date (up to 160 W), which was achieved by increasing both the rate of volume change and the intraoral subambient pressure. The large epaxial muscle (25% of body mass) shortened at high velocities to produce large neurocranial elevation and vertebral extension (up to 41 deg, combined), as well as high muscle mass-specific power (up to 800 W kg-1). For the highest power strikes, axial muscles generated 95% of the power, and 64% of the axial muscle mass consisted of the epaxial muscles. The epaxial-dominated suction expansion of royal knifefish supports our hypothesis that postcranial morphology may be a strong predictor of suction feeding biomechanics.


Subject(s)
Bass , Perciformes , Animals , Bass/physiology , Biomechanical Phenomena , Feeding Behavior/physiology , Muscle, Skeletal/physiology , Perciformes/physiology , Suction
SELECTION OF CITATIONS
SEARCH DETAIL