Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(4): 130560, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211821

ABSTRACT

BACKGROUND: Polymerase chain reaction (PCR) technology and quantitative real-time PCR (qPCR) technology are widely used in clinical diagnosis and research, but amplification efficiency and sensitivity are still key problems for researchers. An increasing number of reports show that gold nanoparticles (AuNPs) can be used to improve the sensitivity and amplification efficiency of PCR. Here, we found that 60 nm gold nanoparticles with a positive charge (60 nm- Au+) can enhance the amplification efficiency of qPCR. METHODS: Mouse DNA was extracted by the alkaline lysis method. Primer 5.0 software was used to design primers and mutation primers, and the DNA fragments were obtained by the method of synthesizing plasmids. The qPCR was applied to amplify target gene fragments. RESULTS: The amplification efficiency of qPCR was improved by about 1.828 times in the experimental group with 60 nm- Au+ compared with the control group without 60 nm- Au+. The primer pair contains a specific palindromic sequence (GGATCC or ACCGGT). And 60 nm Au+ did not enhance the amplification efficiency of qPCR when the above primer was mutated. CONCLUSIONS: The primers contain special palindrome sequences (GGATCC or ACCGGT) with 60 nm- Au+ can enhance the amplification efficiency of qPCR. Therefore, it suggests a more in-depth understanding of the mechanism and function of gold nanoparticles and primer sequences. This study has presented some implications for gold nanoparticles application in the development of qPCR technology.


Subject(s)
Gold , Metal Nanoparticles , Animals , Mice , DNA , Real-Time Polymerase Chain Reaction/methods , Plasmids
2.
Int J Med Sci ; 15(13): 1473-1479, 2018.
Article in English | MEDLINE | ID: mdl-30443168

ABSTRACT

In this study, we investigated the mechanisms that lead to the production of proinflammatory mediators by the murine macrophage cell line, RAW264.7, when these cells are exposed in vitro to recombinant Borrelia burgdorferi basic membrane protein A (rBmpA). Using antibody protein microarray technology with high-throughput detection ability for detecting 25 chemokines in culture supernatant the RAW264.7 cell culture supernatants at 12 and 24 h post-stimulation with rBmpA, we identified two chemokines, a monocyte chemoattractant protein-5 (MCP-5/CCL12) and a macrophage inflammatory protein-2 (MIP-2/CXCL2), both of which increased significantly after stimulation. We then chose these two chemokines for further study. Enzyme-linked immunosorbent assay and real-time polymerase chain reaction revealed that with the increase of rBmpA concentration, MCP-5/CCL12 and MIP-2/CXCL2 showed concentration-dependent increases (p <0.01).Our results indicate that the rBmpA could stimulate the secretion of several specific chemokines and induce Lyme arthritis.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Chemokines/metabolism , Macrophages/drug effects , Macrophages/metabolism , Animals , Cell Line , Mice , Monocyte Chemoattractant Proteins/metabolism , Protein Array Analysis , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...