Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.788
Filter
1.
Org Lett ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949597

ABSTRACT

Minisci-type dehydrogenative coupling of C(sp3)-H and N-heteroaromatics was performed with N-hydroxysuccinimide as a hydrogen atom transfer catalyst in a photoelectrochemical cell composed of a mesoporous BiVO4 photoanode and a Pt electrode. In the absence of metal catalysts and chemical oxidants, a range of N-heteroarenes (e.g., quinolines, isoquinolines, and quinoxaline) can undergo coupling with various C(sp3)-H partners to form the corresponding products in excellent yields.

2.
NPJ Precis Oncol ; 8(1): 138, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951159

ABSTRACT

Malignant pleural effusion (MPE) is a common occurrence in advanced cancer and is often linked with a poor prognosis. Eosinophils were reported to involve in the development of MPE. However, the role of eosinophils in MPE remains unclear. To investigate this, we conducted studies using both human samples and mouse models. Increased eosinophil counts were observed in patients with MPE, indicating that the higher the number of eosinophils is, the lower the LENT score is. In our animal models, eosinophils were found to migrate to pleural cavity actively upon exposure to tumor cells. Intriguingly, we discovered that a deficiency in eosinophils exacerbated MPE, possibly due to their anti-tumor effects generated by modifying the microenvironment of MPE. Furthermore, our experiments explored the role of the C-C motif chemokine ligand 11 (CCL11) and its receptor C-C motif chemokine receptor 3 (CCR3) in MPE pathology. As a conclusion, our study underscores the protective potential of eosinophils against the development of MPE, and that an increase in eosinophils through adoptive transfer of eosinophils or increasing their numbers improved MPE.

3.
Meat Sci ; 216: 109585, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959640

ABSTRACT

In this study, the effect of sodium alginate and quaternized chitosan bis-polysaccharide-based shell transport curcumin nano-emulsions (Cur@QCS/SA) on the microbiological, physicochemical properties, quality characteristics of Harbin red sausage during storage is investigated. According to the microbiological results, the shelf life of Harbin red sausage is extended from 3 d to 6 d by adding 0.15% Cur@QCS/SA, and Bacillus is the most predominant bacterial before 6 d. Additionally, the physicochemical properties change significantly, the pH, weight loss (WL), water holding capacity (WHC), water activity (aw), L*, and a* of red sausage decrease gradually with the extension of storage time, as well as b*, lipid oxidation, proteolysis increase significantly (P < 0.05). Secondly, it is found that 0.15% treatment group can better maintain the quality characteristics of Harbin red sausage according to texture profile analysis (TPA), electronic nose (E-nose), and electronic tongue (E-tongue) (P < 0.05). This study provides a new way for nano-emulsions in food applications and a new option for the preservation of Harbin red sausage as well as other low-temperature meat products.

4.
Front Neurol ; 15: 1419372, 2024.
Article in English | MEDLINE | ID: mdl-38948136

ABSTRACT

Background: Vestibular migraine (VM), an intricate subtype of migraine, amalgamates the dual attributes of migraine and vestibular disorders. In clinical settings, individuals with VM frequently articulate concerns regarding the manifestation of subjective cognitive impairment. This cognitive dysfunction is intricately linked with diminished mobility, heightened susceptibility to falls, and increased absenteeism in afflicted patients. Consequently, comprehending the features of cognitive impairment in VM patients holds potential clinical significance. The pursuit of rapid and objective methods for detection and assessment is foundational and prerequisite for efficacious cognitive management of VM patients. Methods: The study encompassed 50 patients diagnosed with vestibular migraine and recruited 50 age-sex matched healthy controls. All participants underwent anti-saccade tasks, and cognitive evaluation was performed using the MMSE and MoCA to assess overall cognitive function. Additionally, RBANS scales were employed to measure specific cognitive domains. Results: The VM patients and normal controls demonstrated statistical parity in terms of age, gender, education, weight, and BMI, with no significant differences observed. Analysis of cognitive scores divulged a marked increase in the incidence of Mild Cognitive Impairment (MCI) in VM patients compared to Healthy Controls (HCs). Both MMSE and MoCA scores were notably lower in VM patients compared to their healthy counterparts. The RBANS cognitive test indicated significant impairment in immediate memory, visuospatial construction, language, attention, and delayed memory among VM patients. Notably, the Trail Making Test and Stroop Color-Word Test revealed compromised processing speed and executive function cognitive domains. The anti-saccadic task highlighted significantly elevated anti-saccadic latency and frequency of direction errors in vestibular migraine patients. Symptom severity, illness duration, and episode frequency in VM patients positively correlated with counter-scanning errors and negatively correlated with cognitive performance across diverse cognitive domains. Conclusion: VM patients exhibit cognitive decline across multiple cognitive domains during the interictal period. This cognitive impairment may not be fully reversible, underscoring its potential clinical significance for cognitive management in VM patients. The sensitivity of anti-saccade tasks to the cognitive status of VM patients positions them as promising objective indicators for diagnosis, intervention, and evaluation of cognitive impairment effects in VM in future applications.

5.
Ann Transplant ; 29: e943688, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952007

ABSTRACT

BACKGROUND The relationship between clonal hematopoiesis (CH)-associated gene mutations and allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been extensively studied since next-generation sequencing (NGS) technology became widely available. However, research has mainly focused on the relationship between donor CH mutations and transplant prognosis, and research into the relationship between CH mutations in the recipient and acute graft-versus-host disease (aGVHD) is lacking. MATERIAL AND METHODS We analyzed NGS results and their correlation with aGVHD and prognosis in 196 AML patients undergoing allo-HSCT. RESULTS A total of 93 (47.4%) patients had CH mutations. The most frequently mutated genes were DNMT3A (28 of 196; 14.3%), TET2 (22 of 196; 11.2%), IDH1 (15 of 196; 7.7%), IDH2 (14 of 196; 7.1%), and ASXL1 (13 of 196; 6.6%). The incidence of aGVHD was higher in patients older than 45 years old with DTA mutations (DNMT3A, TET2 or ASXL1). DNMT3A mutation but not with TET2 or ASXL1 mutation was an independent risk factor for aGVHD in patients receiving allo-HSCT older than 45 years old. With a median follow-up of 42.7 months, CH mutations were not associated with overall survival and leukemia-free survival. CONCLUSIONS DNMT3A mutation, but not TET2 or ASXL1 mutation, was associated with higher incidence of aGVHD.


Subject(s)
Clonal Hematopoiesis , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Mutation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Female , Graft vs Host Disease/genetics , Graft vs Host Disease/etiology , Middle Aged , Adult , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Clonal Hematopoiesis/genetics , Young Adult , Adolescent , DNA Methyltransferase 3A , Dioxygenases , DNA (Cytosine-5-)-Methyltransferases/genetics , Aged , Prognosis , Transplantation, Homologous , High-Throughput Nucleotide Sequencing , DNA-Binding Proteins , Repressor Proteins
6.
Nurs Crit Care ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955501

ABSTRACT

BACKGROUND: Critical patients may experience various adverse events during transportation within hospitals. Therefore, quickly evaluating and classifying patients before transporting them from the emergency department and focusing on managing high-risk patients are critical. At present, no unified classification method exists; all the current approaches are subjective. AIMS: To ensure transportation safety, we conducted a cluster analysis of critically ill patients transferred from the emergency department to the intensive care unit. STUDY DESIGN: Single-centre cohort study. This study was conducted at a comprehensive first-class teaching hospital in Beijing. Convenience sampling and continuous enrolment were employed. We collected data from 1 January 2019, to 31 December 2021. All patients were transferred from the emergency department to the intensive care unit, and cluster analysis was conducted using five variables. RESULTS: A total of 584 patients were grouped into three clusters. Cluster 1 (high systolic blood pressure group) included 208 (35.6%) patients. Cluster 2 (high heart rate and low blood oxygen group) included 55 (9.4%) patients. Cluster 3 (normal group) included the remaining 321 (55%) patients. The oxygen saturation levels of all the patients were lower after transport, and the proportion of adverse events (61.8%) was the highest in Cluster 2 (p < .05). CONCLUSIONS: This study utilized data on five important vital signs from a cluster analysis to explore possible patient classifications and provide a reference for ensuring transportation safety. RELEVANCE TO CLINICAL PRACTICE: Before transferring patients, we should classify them and implement targeted care. Changes in blood oxygen levels in all patients should be considered, with a focus on the occurrence of adverse events during transportation among patients with high heart rates and low blood oxygen levels.

7.
Front Public Health ; 12: 1409563, 2024.
Article in English | MEDLINE | ID: mdl-38962759

ABSTRACT

The increasingly frequent occurrence of urban heatwaves has become a significant threat to human health. To quantitatively analyze changes in heatwave characteristics and to investigate the return periods of future heatwaves in Wuhan City, China, this study extracted 9 heatwave definitions and divided them into 3 mortality risk levels to identify and analyze historical observations and future projections of heatwaves. The copula functions were employed to derive the joint distribution of heatwave severity and duration and to analyze the co-occurrence return periods. The results demonstrate the following. (1) As the concentration of greenhouse gas emissions increases, the severity of heatwaves intensifies, and the occurrence of heatwaves increases significantly; moreover, a longer duration of heatwaves correlated with higher risk levels in each emission scenario. (2) Increasing concentrations of greenhouse gas emissions result in significantly shorter heatwave co-occurrence return periods at each level of risk. (3) In the 3 risk levels under each emission scenario, the co-occurrence return periods for heatwaves become longer as heatwave severity intensifies and duration increases. Under the influence of climate change, regional-specific early warning systems for heatwaves are necessary and crucial for policymakers to reduce heat-related mortality risks in the population, especially among vulnerable groups.


Subject(s)
Climate Change , China/epidemiology , Humans , Risk Assessment/methods , Extreme Heat/adverse effects , Cities , Hot Temperature/adverse effects , Mortality/trends , Environmental Monitoring
8.
Small ; : e2404792, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923291

ABSTRACT

Electrochemically converting nitrate (NO3 -) into ammonia (NH3) has emerged as an alternative strategy for NH3 production and effluent treatment. Nevertheless, the electroreduction of dilute NO3 - is still challenging due to the competitive adsorption between various aqueous species and NO3 -, and unfavorable water dissociation providing *H. Herein, a new tandem strategy is proposed to boost the electrochemical nitrate reduction reaction (NO3RR) performance of Cu nanoparticles supported on single Fe atoms dispersed N-doped carbon (Cu@Fe1-NC) at dilute NO3 - concentrations (≤100 ppm NO3 --N). The optimized Cu@Fe1-NC presents a FENH3 of 97.7% at -0.4 V versus RHE, and a significant NH3 yield of 1953.9 mmol h-1 gCu -1 at 100 ppm NO3 --N, a record-high activity for dilute NO3RR. The metal/carbon heterojunctions in Cu@Fe1-NC enable a spontaneous electron transfer from Cu to carbon substrate, resulting in electron-deficient Cu. As a result, the electron-deficient Cu facilitates the adsorption of NO3 - compared with the pristine Cu. The adjacent atomic Fe sites efficiently promote water dissociation, providing abundant *H for the hydrogenation of *NOx e at Cu sites. The synergistic effects between Cu and single Fe atom sites simultaneously decrease the energy barrier for NO3 - adsorption and hydrogenation, thereby enhancing the overall activity of NO3 - reduction.

9.
Front Cardiovasc Med ; 11: 1403242, 2024.
Article in English | MEDLINE | ID: mdl-38938653

ABSTRACT

Aims: This meta-analysis aimed to explore the association between serum uric acid levels and the efficacy of uric acid-lowering therapies on clinical outcomes among patients with heart failure with preserved ejection fraction (HFpEF). Methods: A comprehensive literature search was conducted through October 21, 2023, across PubMed, Embase, Cochrane Library, and Web of Science databases. The pooled effect sizes were estimated and presented with their respective 95% confidence intervals (CI). Subgroup analyses were conducted based on various factors, including sample size (<1,000 vs. ≥1,000), follow-up duration (<2 years vs. ≥2 years), study quality (assessed by a score of <7 vs. ≥7), ethnicity (Non-Asian vs. Asian), study design (prospective vs. retrospective), type of heart failure (HF) (acute vs. chronic), presence of hyperuricemia (yes or no), left ventricular ejection fraction (LVEF) thresholds (≥45% vs. ≥50%), and the type of uric acid-lowering therapy (traditional vs. novel). Results: The analysis included a total of 12 studies. Elevated serum uric acid levels were significantly linked to an increased risk of all-cause mortality [relative risk (RR): 1.21, 95% CI: 1.06-1.37, P = 0.004] and cardiovascular (CV) mortality (RR: 1.71, 95% CI: 1.42-2.04, P < 0.001) in HFpEF patients. Subgroup analyses confirmed this association, particularly in non-Asian populations, those with chronic HFpEF, and studies with a follow-up duration of two years or more. Additionally, higher uric acid levels were associated with an increased risk of HF-related hospitalization [hazard ratio (HR): 1.61, 95% CI: 1.12-2.34, P = 0.011]. Regarding treatment, uric acid-lowering therapy did not show a significant effect on reducing mortality in HFpEF patients. However, it was associated with a decreased risk of hospitalization due to HF (RR: 0.85, 95% CI: 0.79-0.91, P < 0.001). Conclusion: The findings of this study highlight the prognostic significance of serum uric acid levels in HFpEF and suggest that uric acid-lowering therapy may be beneficial in reducing the incidence of HF hospitalizations. Further research is warranted to elucidate the mechanisms by which uric acid-lowering therapy confers its potential benefits.

10.
Cancer Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38942026

ABSTRACT

KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.

11.
Fundam Res ; 4(2): 291-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933506

ABSTRACT

The photogenerated charge carrier separation and transportation of inside photocathodes can greatly influence the performance of photoelectrochemical (PEC) H2 production devices. Coupling TiO2 with p-type semiconductors to construct heterojunction structures is one of the most widely used strategies to facilitate charge separation and transportation. However, the band position of TiO2 could not perfectly match with all p-type semiconductors. Here, taking antimony selenide (Sb2Se3) as an example, a rational strategy was developed by introducing a viologen electron transfer mediator (ETM) containing polymeric film (poly-1,1'-dially-[4,4'-bipyridine]-1,1'-diium, denoted as PV2+) at the interface between Sb2Se3 and TiO2 to regulate the energy band alignment, which could inhibit the recombination of photogenerated charge carriers of interfaces. With Pt as a catalyst, the constructed Sb2Se3/PV2+/TiO2/Pt photocathode showed a superior PEC hydrogen generation activity with a photocurrent density of -18.6 mA cm-2 vs. a reversible hydrogen electrode (RHE) and a half-cell solar-to-hydrogen efficiency (HC-STH) of 1.54% at 0.17 V vs. RHE, which was much better than that of the related Sb2Se3/TiO2/Pt photocathode without PV2+ (-9.8 mA cm-2, 0.51% at 0.10 V vs. RHE).

12.
J Clin Med ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929949

ABSTRACT

Background: In this investigation, we aimed to understand the influence of oral probiotic supplementation on the vaginal microbiota of women preparing for assisted reproductive technology (ART) procedures. Given the importance of a healthy microbiome for reproductive success, this study sought to explore how probiotics might alter the bacterial composition in the vaginal environment. Methods: We recruited a cohort of 30 women, averaging 37 years of age (ranging from 31 to 43 years), who were scheduled to undergo ART. Using 16S ribosomal RNA (rRNA) sequencing, we meticulously analyzed the vaginal microbiota composition before and after the administration of oral probiotic supplements. Results: Our analysis identified 17 distinct microorganisms, including 8 species of Lactobacillus. Following probiotic supplementation, we observed subtle yet notable changes in the vaginal microbiota of some participants. Specifically, there was a decrease in Gardnerella abundance by approximately 20%, and increases in Lactobacillus and Bifidobacterium by 10% and 15%, respectively. Additionally, we noted a significant reduction in the Firmicutes/Bacteroidetes (F/B) ratio in the probiotic group, indicating potential shifts in the overall bacterial composition. Conclusions: These preliminary findings suggest that oral probiotic supplementation can induce significant changes in the vaginal microbiota of middle-aged women undergoing ART, potentially improving their overall bacterial profile. Future studies should consider a larger sample size and a narrower age range to validate these results. Investigating factors related to female hormone production could also provide deeper insights. Understanding the effects of probiotics on the vaginal microbiota in patients with ovarian aging may lead to personalized interventions and better reproductive outcomes.

13.
Curr Med Sci ; 44(3): 545-553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900386

ABSTRACT

OBJECTIVE: Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS: The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS: The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS: TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.


Subject(s)
Apoptosis , Colorectal Neoplasms , DNA Damage , Radiation Tolerance , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , DNA Damage/radiation effects , Radiation Tolerance/genetics , Radiation Tolerance/drug effects , Cell Line, Tumor , Male , Gene Knockdown Techniques , Middle Aged , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction , Female , Phosphorylation , Mitogen-Activated Protein Kinase Kinases
14.
Nat Commun ; 15(1): 5388, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918376

ABSTRACT

Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.


Subject(s)
Acetyltransferases , Cryoelectron Microscopy , Lysosomes , Mucopolysaccharidosis III , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/enzymology , Humans , Lysosomes/metabolism , Lysosomes/enzymology , Acetyltransferases/metabolism , Acetyltransferases/chemistry , Acetyltransferases/genetics , Catalytic Domain , Mutation , Heparitin Sulfate/metabolism , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/chemistry , Models, Molecular , Glucosamine/metabolism , Glucosamine/chemistry , Acetylation , Intracellular Membranes/metabolism
17.
Food Chem ; 456: 140027, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38870819

ABSTRACT

Tuber and tuberous roots proteins are important sources for producing bioactive peptides. The objective of this review is to present the current research status of tubers and tuberous roots bioactive peptides (TTRBP), including its preparation methods, purification techniques, structure identification approaches, biological functions, and applications in the food industry. Moreover, the current challenges and future development trends of TTRBP are elucidated. Currently, TTRBP are mainly produced by enzymatic hydrolysis and fermentation. Pretreatment like high static pressure, ultrasound and microwave can assist enzymatic hydrolysis and facilitate TTRBP production. In addition, TTRBP are structurally diverse, which is related to the molecular weight, amino acids composition, and linkage mode. Accordingly, they have various biological activities (such as antioxidant, antihypertensive, hypoglycemic) and have been utilized in the food industry as functional ingredients and food additives. This review will provide valuable insights for the optimal utilization of tuber and tuberous roots.

18.
Environ Int ; 190: 108793, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38878652

ABSTRACT

Under international advocacy for a low-carbon and healthy lifestyle, ambient PM2.5 pollution poses a dilemma for urban residents who wish to engage in outdoor exercise and adopt active low-carbon commuting. In this study, an Urban Air Health Navigation System (UAHNS) was designed and proposed to assist users by recommending routes with the least PM2.5 exposure and dynamically issuing early risk warnings based on topologized digital maps, an application programming interface (API), an eXtreme Gradient Boosting (XGBoost) model, and two-step spatial interpolation. A test of the UAHNS's functions and applications was carried out in Wuhan city. The results showed that, compared with trained random forest (RF), LightGBM, Adaboost models, etc., the XGBoost model performed better, with an R2 exceeding 0.90 and an RMSE of approximately 15.74 µg/m3, based on data from national air and meteorological monitoring stations. Further, the two-step spatial interpolation model was adopted to dynamically generate pollution distribution at a spatial resolution of 300 m*300 m. Then, an exposure comparison was performed under randomly selected commuting routes and times in Wuhan, showing the recommended routes for lower PM2.5 exposure made effectively help. And the route difference ratios of about 14.9 % and 16.9 % for riding and walking, respectively. Finally, the UAHNS platform was integrally realized for Wuhan, consisting of a real-time PM2.5 query, a one-hour PM2.5 prediction function at any location, health navigation on city map, and a personalized health information query.

19.
Front Pharmacol ; 15: 1409506, 2024.
Article in English | MEDLINE | ID: mdl-38855749

ABSTRACT

Introduction: Alternol is a natural compound isolated from the fermentation of a mutated fungus. We have demonstrated its potent anti-cancer effect via the accumulation of radical oxygen species (ROS) in prostate cancer cells in vitro and in vivo. In this study, we tested its anti-cancer spectrum in multiple platforms. Methods: We first tested its anti-cancer spectrum using the National Cancer Institute-60 (NCI-60) screening, a protein quantitation-based assay. CellTiter-Glo screening was utilized for ovarian cancer cell lines. Cell cycle distribution was analyzed using flow cytometry. Xenograft models in nude mice were used to assess anti-cancer effect. Healthy mice were tested for the acuate systemic toxicity. Results: Our results showed that Alternol exerted a potent anti-cancer effect on 50 (83%) cancer cell lines with a GI50 less than 5 µM and induced a lethal response in 12 (24%) of those 50 responding cell lines at 10 µM concentration. Consistently, Alternol displayed a similar anti-cancer effect on 14 ovarian cancer cell lines in an ATP quantitation-based assay. Most interestingly, Alternol showed an excellent safety profile with a maximum tolerance dose (MTD) at 665 mg/kg bodyweight in mice. Its therapeutic index was calculated as 13.3 based on the effective tumor-suppressing doses from HeLa and PC-3 cell-derived xenograft models. Conclusion: Taken together, Alternol has a broad anti-cancer spectrum with a safe therapeutic index in vivo.

20.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884222

ABSTRACT

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Subject(s)
Carbon Isotopes , Ecosystem , Nitrogen Isotopes , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Tibet , China , Forests , Altitude , Trees/growth & development , Trees/metabolism , Trees/chemistry , Tracheophyta/growth & development , Tracheophyta/chemistry , Tracheophyta/metabolism , Grassland , Poaceae/growth & development , Poaceae/chemistry , Poaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...