Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 42(9): 4520-4526, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-34414752

ABSTRACT

Nanoscale zero-valent iron (nZVI) shows excellent reduction of Cr(Ⅵ), but the passivation on its outer surface can restrict its longevity and performance. To tackle this problem, this work introduced Shewanella oneidensis MR-1, a dissimilatory iron-reducing bacterium, into the chemical reduction system of aged nZVI/biochar (B) and Cr(Ⅵ). The potential synergistic effect of Cr(Ⅵ) reduction of aged nZVI/B and MR-1 was systematically investigated under varying conditions. The results indicated that aged nZVI/B and MR-1 exhibited a synergistic effect at a pH of 7, and the removal rate of Cr(Ⅵ) increased by 51.3%. Further research showed that the synergistic effect could be attenuated with the increase in the initial Cr(Ⅵ) concentration and enhanced with the increase in the MR-1 concentration. The XPS spectra confirmed that Cr(Ⅵ) was mainly removed through reduction. The dissimilatory iron-reducing ability of MR-1 played a key role in enhancing the Cr(Ⅵ) reduction. The reductive dissolution of the oxidation layers not only released reactive sites inside the nZVI, but also reduced Cr(Ⅵ) by producing ferrous ions. Moreover, B promoted the reduction by dispersing the nZVI and mediating the extracellular electron transfer. This study provides a new insight into solving the passivation problem of the long-term application of nZVI for Cr(Ⅵ) removal, which is considered a promising solution for synergistically improving the performance of nZVI in environmental remediation.


Subject(s)
Iron , Water Pollutants, Chemical , Charcoal , Chromium , Shewanella , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 52(1): 61-70, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29188998

ABSTRACT

Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Bacteria , Charcoal , Ferric Compounds , Lactic Acid , Phylogeny , RNA, Ribosomal, 16S , Soil
3.
RSC Adv ; 8(14): 7465-7472, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-35539100

ABSTRACT

In a natural environment, Fe(ii) adsorbed onto the surfaces of natural particles to form various surface complex species can influence the transformation of contaminants. The reductive reactivity of the [[triple bond, length as m-dash]Fe(iii)]/[[triple bond, length as m-dash]Fe(ii)] couples are close correlated with the surrounding conditions. In this study, we investigated the effects of Si(iv) on the reductive reactivity of [[triple bond, length as m-dash]Fe(iii)]/[[triple bond, length as m-dash]Fe(ii)] couples adsorbed onto γ-Al2O3. Experiments were conducted under different conditions to investigate the effects of Si(iv) on the reactivity of [[triple bond, length as m-dash]Fe(iii)]/[[triple bond, length as m-dash]Fe(ii)] couples for 2-nitrophenol (2-NP, selected as the model pollutant) reduction in γ-Al2O3 suspensions. Kinetics results revealed that chemical adsorption is the rate limiting step in Fe(ii) and Si(iv) adsorption processes and the reduction of 2-NP is an endothermic reaction. The linear correlations between the reduced peak oxidation potential (E p) (versus SCE) and 2-NP reduction rate (ln k), and between the adsorbed Fe(ii) density (ρ Fe(II)) and ln k, illustrated that E p and ρ Fe(II) are two key factors in the inhibiting effects of Si(iv) on the reductive reactivity of Fe(iii)/Fe(ii) couples on γ-Al2O3. The results of Fe K-edge X-ray absorption spectroscopy revealed that the increase of Si(iv) concentration resulted in the gradual change in the composition of the adsorbed Fe species from pure [triple bond, length as m-dash]AlOFe+ (γ-Al2O3 surface-bound Fe(ii) species with higher reductive reactivity) to a mixture of [triple bond, length as m-dash]AlOFe+ and [triple bond, length as m-dash]SiOFe+ (SiO2 surface-bound Fe(ii) species with lower reductive reactivity), leading to the decrease in ρ Fe(II), the positive shift in E p, the increase in activation energy (E a), and consequently the decrease in the reduction rate (ln k) of 2-NP.

4.
Chemosphere ; 195: 260-271, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29272795

ABSTRACT

The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg-1) and As (0.17 ± 0.01 mg kg-1) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Charcoal/pharmacology , Oryza/metabolism , Arsenic/metabolism , Biological Availability , Cadmium/metabolism , Environmental Pollution/analysis , Iron/analysis , Soil , Soil Pollutants/analysis
5.
J Hazard Mater ; 344: 958-967, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29197791

ABSTRACT

Although biochar has great potential for heavy metal removal from sediments or soils, its impact on arsenic biogeochemistry in contaminated paddy fields remains poorly characterized. In this study, anaerobic microcosms were established with arsenic-contaminated paddy soil to investigate arsenic transformation as well as the potentially active microbial community and their transcriptional activities in the presence of biochar. The results demonstrated that biochar can simultaneously stimulate microbial reduction of As(V) and Fe(III), releasing high levels of As(III) into the soil solution relative to the control. Total RNAs were extracted to profile the potentially active microbial communities, which suggested that biochar increased the abundance of arsenic- and iron-related bacteria, such as Geobacter, Anaeromyxobacter and Clostridium compared to the control. Reverse transcription, quantitative PCR (RT-qPCR) showed that the abundance of Geobacter transcripts were significantly stimulated by biochar throughout the incubation. Furthermore, significant positive correlations were observed between the abundance of Geobacter transcripts and As(V) concentrations, and between that of Clostridium transcripts and Fe(III) concentrations in biochar-amended microcosms. Our findings suggest that biochar can stimulate the activity of metal-reducing bacteria to promote arsenic mobility. The Geobacter may contribute to As(V) reduction in the presence of biochar, while Clostridium has a role in Fe(III) reduction.


Subject(s)
Arsenic/metabolism , Bacteria/drug effects , Biodegradation, Environmental/drug effects , Charcoal/pharmacology , Iron/metabolism , Soil Pollutants/metabolism , Bacteria/genetics , Bacteria/metabolism , Oryza , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Soil Microbiology
6.
Chemosphere ; 187: 43-51, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28834771

ABSTRACT

Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides.


Subject(s)
Aeromonas hydrophila/metabolism , Biodegradation, Environmental , Copper/chemistry , Iron Compounds , Iron/chemistry , Minerals , Soil Pollutants/chemistry , Adsorption , Anaerobiosis , Copper/toxicity , Ferric Compounds/pharmacology , Iron/metabolism , Iron Compounds/chemistry , Minerals/chemistry , Oxidation-Reduction , Soil Pollutants/metabolism
7.
Ying Yong Sheng Tai Xue Bao ; 26(4): 1137-44, 2015 Apr.
Article in Chinese | MEDLINE | ID: mdl-26259456

ABSTRACT

Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.


Subject(s)
Agriculture , Environmental Pollution , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , China , Cities , Environmental Monitoring , Industry
8.
Environ Technol ; 35(13-16): 1916-27, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24956785

ABSTRACT

Green manuring is a common practice in replenishment of soil organic matter and nutrients in rice paddy field. Owing to the complex interplay of multiple factors, the oxidation--reduction (redox) properties of dissolved organic matter (DOM) from green manure crops are presently not fully understood. In this study, a variety of surrogate parameters were used to evaluate the redox capacity and redox state of DOM derived from Chinese milk vetch (CMV, Astragalus sinicus L.) via microbial decomposition under continuously flooded (CF) and non-flooded (NF) conditions. Additionally, the correlation between the surrogate parameters of CMV-DOM and the kinetic parameters of relevant redox reactions was evaluated in a soil-water system containing CMV-DOM. Results showed that the redox properties of CMV-DOM were substantially different between the fresh and decomposed CMV-DOM treatments. Determination of the surrogate parameters via ultraviolet-visible/Fourier transform infrared absorption spectroscopy and gel permeation chromatography generally provided high-quality data for predicting the redox capacity of CMV-DOM, while the surrogate parameters determined by elemental analysis were suitable for predicting the redox state of CMV-DOM. Depending on the redox capacity and redox state of various moieties/components, NF-decomposed CMV-DOM could easily accelerate soil reduction by shuttling electrons to iron oxides, because it contained more reversible redox-active functional groups (e.g. quinone and hydroquinone pairs) than CF-decomposed CMV-DOM. This work demonstrates that a single index cannot interpret complex changes in multiple factors that jointly determine the redox reactivity of CMV-DOM. Thus, a multi-parametric study is needed for providing comprehensive information on the redox properties of green manure DOM.


Subject(s)
Agriculture/methods , Astragalus Plant/chemistry , Soil , Carbohydrates/analysis , Carboxylic Acids/analysis , Ferrous Compounds/analysis , Oxidation-Reduction , Plant Preparations/chemistry , Principal Component Analysis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
9.
J Hazard Mater ; 275: 200-9, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24857903

ABSTRACT

The iron-catalyzed oxidation of arsenite (As(III)) associated with Fenton or Fenton-like reactions is one of the most efficient arsenic removal methods. However, the conventional chemical or electro-Fenton systems for the oxidation of As(III) are only efficient under acid conditions. In the present study, a cost-effective and efficient bio-electro-Fenton process was performed for As(III) oxidation in a dual-chamber microbial fuel cell (MFC) under neutral pH conditions. In such a system, the Fenton reagents, including H2O2 and Fe(II), were generated in situ by microbial-driven electro-reduction of O2 and γ-FeOOH, respectively, without an electricity supply. The results indicated that the process was capable of inducing As(III) oxidation with an apparent As(III) depletion first-order rate constant of 0.208 h(-1). The apparent oxidation current efficiency was calculated to be as high as 73.1%. The γ-FeOOH dosage in the cathode was an important factor in determining the system performance. Fourier-transform infrared spectroscopy (FT-IR) analysis indicated that As(V) was bound to the solid surface as a surface complex but not as a precipitated solid phase. The mechanism of bio-E-Fenton reaction for As(III) oxidation was also proposed. The bio-electro-Fenton system makes it potentially attractive method for the detoxification of As(III) from aqueous solution.


Subject(s)
Arsenites/chemistry , Bioelectric Energy Sources , Ferric Compounds/chemistry , Shewanella putrefaciens/metabolism , Water Pollutants, Chemical/chemistry , Ferric Compounds/metabolism , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Oxidation-Reduction , Water Purification/methods
10.
Environ Sci Process Impacts ; 16(7): 1790-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24855639

ABSTRACT

Variable-charge (v-c) soils in subtropical areas contain considerable amounts of iron/aluminum (Fe/Al) oxides that can strongly influence the fate of heavy metals in agricultural ecosystems. However, the relationship between heavy metal accumulation in vegetables and the geochemical factors associated with v-c soils in subtropical regions remains unknown. The present study investigated heavy metal accumulation under field conditions in the Pearl River Delta (PRD) by measuring the content of 8 heavy metals (zinc (Zn), arsenic (As), copper (Cu), mercury (Hg), lead (Pb), chromium (Cr), nickel (Ni) and cadmium (Cd)) in 43 pairs of v-c soil and vegetable (balsam pear and cowpea) samples. Soil physicochemical properties including pH, texture, organic matter and oxide minerals (Fe2O3, SiO2, Al2O3, CaO, MgO, K2O and Na2O) were also analyzed. Heavy metal accumulation from soil to vegetables was assessed based on bioconcentration factors (BCFs). The results showed that soil extractable Fe, oxide minerals and chemical weathering indices of v-c soils strongly affected heavy metal accumulation, whereas the content of Zn, Cu, Cr and Ni in vegetables was strongly affected by the soil clay content. Significant correlations were found between the BCFs of heavy metals and oxide minerals. However, no significant relationship was found between pH and heavy metal accumulation (except for Cu) in balsam pear and cowpea. Correlation analyses showed that a lower oxalate/DCB- extractable Fe content might indicate greater heavy metal (Zn, Cu, Hg, Cr and Ni) accumulation in vegetables. Therefore, it can be deduced that oxalate/DCB- extractable Fe content is a critical geochemical factor that determines the bioavailability of heavy metals and that iron biogeochemical cycles play vital roles in the fate of heavy metals in vegetable fields in this area. These findings provide new insights into the behaviors and fate of heavy metals in subtropical v-c soils and can be used to develop possible guidelines for vegetable safety management.


Subject(s)
Environmental Monitoring , Fabaceae/chemistry , Metals, Heavy/analysis , Pyrus/chemistry , Soil Pollutants/analysis , Agriculture , China , Rivers , Soil/chemistry
11.
J Hazard Mater ; 272: 10-9, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24662270

ABSTRACT

Pentachlorophenol (PCP) is widely distributed in the soil, and nitrogen fertilizer is extensively used in agricultural production. However, studies on the fate of organic contaminants as affected by nitrogen fertilizer application have been rare and superficial. The present study aimed to examine the effect of ammonium chloride (NH4Cl) and urea (CO(NH2)2) application on the reductive transformation of PCP in a paddy soil. The study showed that the addition of low concentrations of NH4Cl/CO(NH2)2 enhanced the transformation of PCP, while the addition of high concentrations of NH4Cl/CO(NH2)2 had the opposite effect. The variations in the abundance of soil microbes in response to NH4Cl/CO(NH2)2 addition showed that both NH4Cl and CO(NH2)2 had inhibitory effects on the growth of dissimilatory iron-reducing bacteria (DIRB) of the genus Comamonas. In contrast, for the genus Shewanella, low concentrations of NH4Cl inhibited growth, and high concentrations of NH4Cl enhanced growth, whereas all concentrations of CO(NH2)2 showed enhancement effects. In addition, consistent patterns of variation were found between the abundances of dechlorinating bacteria in the genus Dehalobacter and PCP transformation rates under NH4Cl/CO(NH2)2 addition. In conclusion, nitrogen application produced variations in the structure of the soil microbial community, especially in the abundance of dissimilatory iron-reducing bacteria and dechlorinating bacteria, which, in turn, affected PCP dechlorination.


Subject(s)
Ammonium Chloride/chemistry , Pentachlorophenol/chemistry , Soil Microbiology , Urea/chemistry , Chlorine/chemistry , Comamonas/drug effects , DNA/analysis , Iron/chemistry , Nitrogen/chemistry , Pentachlorophenol/analysis , Shewanella/drug effects , Soil , Soil Pollutants/chemistry
12.
Environ Monit Assess ; 186(6): 3351-64, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24448685

ABSTRACT

We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.


Subject(s)
Electronic Waste , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Recycling , Soil Pollutants/analysis , Soil/chemistry , China
13.
J Environ Manage ; 132: 42-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24286925

ABSTRACT

Reductive dechlorination is a crucial pathway for anaerobic biodegradation of highly chlorinated organic contaminants. Under an anoxic environment, reductive dechlorination of organic contaminants can be affected by many redox processes such as nitrate reduction and iron reduction. In the present study, batch incubation experiments were conducted to investigate the effect of nitrate addition on reductive dechlorination of PCP in paddy soil with consideration of iron transformation. Study results demonstrate that low concentrations (0, 0.5 and 1 mM) of nitrate addition can enhance the reductive dechlorination of PCP and Fe(III) reduction, while high concentrations (5, 10, 20 and 30 mM) of nitrate addition caused the contrary. Significant positive correlations between PCP degradation rates and the formation rates of dissolved Fe(II) (pearson correlation coefficients r = 0.965) and HCl-extractable Fe(II) (r = 0.921) suggested that Fe(III) reduction may enhance PCP dechlorination. Furthermore, consistent variation trends of PCP degradation and the abundances of the genus Comamonas, capable of Fe(III) reduction coupled to reductive dechlorination, and of the genus Dehalobacter indicated the occurrence of microbial community variation induced by nitrate addition as a response to PCP dechlorination.


Subject(s)
Chlorine/metabolism , Iron/metabolism , Nitrates/metabolism , Pentachlorophenol/metabolism , Soil Microbiology , Soil Pollutants/metabolism , China , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Nitrogen Cycle , Oxidation-Reduction
14.
Sci Total Environ ; 447: 160-8, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23380564

ABSTRACT

High levels of organochlorine pesticides (OCPs) such as hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) have been found in soil of the Pearl River Delta (PRD), attributable to high pesticide application in this area. Consequently, the occurrence and environmental effect of HCHs and DDTs in the PRD have attracted considerable attention. However, study focusing on the influence of potential factors such as soil property on the environmental fate of HCHs and DDTs in the PRD has been rare. The present study aimed to investigate the impact of soil physiochemical properties on the distribution patterns and fate of soil HCHs and DDTs on a large spatial scale. Levels of HCHs (sum of α-, ß-, γ- and δ-HCH) and DDTs (sum of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDT), 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane (p,p'-DDD), and 1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene (p,p'-DDE)) in 151 soil samples covering all areas of the PRD and physiochemical parameters related to soil properties including pH, total organic carbon (TOC), total Fe (TFe), DCB-Fe (DFe), amorphous-Fe (AFe), complexed-Fe (CFe), total Mn (TMn), DCB-Mn (DMn), amorphous-Mn (AMn), complexed-Mn (CMn) and cation exchange capacity (CEC) were determined. The residual levels of HCHs and DDTs in soils of the present study, which are mainly controlled by soil TOC and CFe content and varying spatially with land use types, may potentially pose ecological risk to plants and animals. On the other hand, transformation of soil HCHs may be affected by pH and DDT transformation correlated significantly with AFe and CFe. Currently, soil has become an important secondary source of OCPs and the re-emission potential of OCPs in soil was mainly affected by soil OCP concentrations and land use types.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , China , Dichlorodiphenyl Dichloroethylene/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Hexachlorocyclohexane/analysis , Rivers/chemistry
15.
Chemosphere ; 91(11): 1547-55, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23332677

ABSTRACT

Fourteen low-molecular-weight organic acids (organic acids) and eight neutral monosaccharides (monosaccharides) were used to investigate the intrinsic link between ferrous iron [Fe(II)] accumulation and pentachlorophenol (PCP) degradation at the paddy soil-floodwater interface. Using logistic curve fitting, significant differences were observed between Fe(II) accumulation with organic acids and monosaccharides. These differences were attributed to large variations in the dissociation constants and the number of carbon atoms per molecule. A significant relationship was observed between the maximum capacity of Fe(II) accumulation and PCP degradation. Correlations were established between environmental variables including PCP, NaOAc-/HCl-extractable Fe(II), water soluble organic carbon (WSOC), anodic peak oxidation potential (Ep) of Fe(II) species, oxidation-reduction potential (ORP), and pH. The increase in pH combined with WSOC consumption caused a decrease in Ep, which greatly enhanced the HCl-extractable Fe(II) accumulation and subsequently contributed to PCP degradation.


Subject(s)
Ferrous Compounds/chemistry , Organic Chemicals/chemistry , Pentachlorophenol/chemistry , Soil Pollutants/chemistry , Acids/chemistry , Environmental Monitoring , Monosaccharides/chemistry , Soil/chemistry , Water/chemistry
16.
Microb Biotechnol ; 6(2): 141-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23217085

ABSTRACT

With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/metabolism , Corynebacterium/metabolism , Ferric Compounds/metabolism , Humic Substances , Biodegradation, Environmental , Biotechnology/methods , Corynebacterium/classification , Hydrogen-Ion Concentration , Oxidation-Reduction , Quinones/metabolism , Spectroscopy, Fourier Transform Infrared
17.
J Agric Food Chem ; 60(45): 11238-44, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23095105

ABSTRACT

A fermentative facultative anaerobe, strain HS01 isolated from subterranean sediment, was identified as Aeromonas hydrophila by 16S rRNA sequence analysis. The biotransformation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDD), and 1,1-dichloro-2,2-bis (4-chlorophenyl) ethane (DDE) by HS01 was investigated in the presence of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). The results demonstrated that HS01 was capable of reducing DDTs, goethite and AQDS. And goethite can significantly enhance the reduction of DDT, DDD and DDE to some extent, while the addition of AQDS can further accelerate the reduction of Fe(III) and DDTs. The products of DDT transformation were identified as a large amount of dominant DDD, and small amounts of 1-chloro-2,2-bis-(p-chlorophenyl)ethane (DDMU), unsym-bis(p-chlorophenyl)-ethylene (DDNU), and 4,4'-dichlorobenzophenone (DBP). The results of cyclic voltammetry suggested that AQDS could increase the amounts of reactive biogenic Fe(II), resulting in the enhanced transformation of DDTs. This investigation gives some new insight in the fate of DDTs related to iron- and humic-reducing bacteria.


Subject(s)
Aeromonas hydrophila/metabolism , Anthraquinones/metabolism , DDT/metabolism , Geologic Sediments/microbiology , Iron Compounds/metabolism , Iron/metabolism , Minerals/metabolism , Aeromonas hydrophila/classification , Aeromonas hydrophila/genetics , Aeromonas hydrophila/isolation & purification , Biodegradation, Environmental , Biotransformation , Humic Substances/analysis , Oxidation-Reduction
18.
J Environ Monit ; 14(6): 1551-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22584803

ABSTRACT

Effects of two ecological earthworm species (epigeic Eisenia foetida and endogeic Amynthas robustus E. Perrier) with different densities (15 and 30 individuals per kg of soil) on the removal of soil 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) with two pollution levels (2 and 4 mg kg(-1)) were investigated. Concentrations of DDT and its metabolites, including 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU), were monitored after 60, 180, and 360 days of incubation. The results obtained showed that both earthworm species can significantly enhance degradation of soil DDT to its metabolites. For E. foetida, the higher earthworm density showed significantly higher rate of DDT degradation than the lower one. Anaerobic reductive dechlorination was the main degradation pathway over 180 days of incubation, while the aerobic dechlorination process was promoted between 180 and 360 days of incubation. Some earthworm amended treatments showed significantly higher microbial biomass carbon and nitrogen than the control, which suggested that earthworms might enhance the microbial degradation of DDT. Both earthworm species would have the potential to be applied to enhance the remediation of agricultural lands polluted by DDT.


Subject(s)
DDT/metabolism , Soil Pollutants/metabolism , Agriculture , Animals , Biodegradation, Environmental , DDT/analysis , Insecticides/analysis , Insecticides/metabolism , Oligochaeta , Pesticide Residues/analysis , Pesticide Residues/metabolism , Soil/chemistry , Soil Pollutants/analysis
19.
J Agric Food Chem ; 60(2): 630-8, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22224662

ABSTRACT

The present study investigated copper aging and pentachlorophenol (PCP) reductive transformation under the effects of the Fe(II)/Cu(II) interaction in paddy soil in south China. Kinetic measurements demonstrated that the PCP reductive transformation rate (k) could be promoted in the presence of no more than 0.375 mM Cu(II) and inhibited in the presence of no less than 0.5 mM Cu(II). The highest k value in the presence of 0.25 mM Cu(II) corresponds to the lowest redox potential (E(p)) value of active Fe species. The increasing trend in E(p) of the active Fe species is consistent with the declining trend in the k value of PCP reduction and vice versa. Dissolved Cu(II) is gradually transformed into immobilized Cu species during PCP reduction, which indicates that Cu aging is enhanced by the Fe(II)/Cu(II) interaction. These findings improve our general understanding of the Fe(II)/Cu(II) interaction on soil iron redox chemistry for polychlorinated pesticide detoxification and heavy metal immobilization.


Subject(s)
Copper , Iron , Pentachlorophenol/chemistry , Soil Pollutants/chemistry , Soil , China , Copper/chemistry , Electrochemistry/methods , Electrodes , Ferrous Compounds , Kinetics , Oxidation-Reduction , Pentachlorophenol/metabolism
20.
Chemosphere ; 86(11): 1106-11, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22226367

ABSTRACT

The ability of calcium peroxide (CaO(2)) to immobilize As of contaminated soil was studied using pot and field experiments. In pot experiment, CaO(2) applied at 2.5 and 5 g kg(-1) significantly increased celery shoot weight and decreased shoot As accumulation, which was ascribed to the formation of stable crystalline Fe and Al oxides bound As and the reduction of labile As fractions in the soil. The labile As fractions were pH dependent and it followed a "V" shaped profile with the change of pH. In field experiment, the dose of CaO(2) application at 750 kg ha(-1) was optimal and at which the celery was found to produce the highest biomass (63.4 Mg ha(-1)) and lowest As concentration (0.43 mg kg(-1)). CaO(2) probably has a promising potential as soil amendment to treat As contaminated soils.


Subject(s)
Apium/metabolism , Arsenic/metabolism , Environmental Restoration and Remediation/methods , Peroxides/chemistry , Soil Pollutants/metabolism , Arsenic/analysis , Arsenic/chemistry , Peroxides/metabolism , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...