Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2116-2125, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282900

ABSTRACT

This study aims to separate and characterize self-assembled nanoparticles(SAN) from Shaoyao Gancao Decoction(SGD) and determine the content of active compounds. Further, we aimed to observe the therapeutic effect of SGD-SAN on imiquimod-induced psoriasis in mice. The separation of SGD was performed by dialysis, and the separation process was optimized by single factor experiment. The SGD-SAN isolated under the optimal process was characterized, and the content of gallic acid, albiflorin, paeoniflorin, liquiritin, isoliquiritin apioside, isoliquiritin, and glycyrrhizic acid in each part of SGD was determined by HPLC. In the animal experiment, mice were assigned into a normal group, a model group, a methotrexate group(0.001 g·kg~(-1)), and SGD, SGD sediment, SGD dialysate, and SGD-SAN groups of different doses(1, 2, and 4 g·kg~(-1)) respectively. The psoriasis grade of mice was evaluated based on the pathological changes of skin lesions, the content of inflammatory cytokines, organ index and other indicators. The results showed that SAN obtained by centrifugation at 13 000 r·min~(-1) for 30 min was stable after dialysis for 4 times, which were uniform spherical nanoparticles with the particle size of(164.43±1.34) nm, the polydispersity index of(0.28±0.05), and the Zeta potential of(-12.35±0.80) mV. The active compound content accounted for more than 70% of SGD. Compared with the model group, SAN and SGD decreased the skin lesion score, spleen index, and inflammatory cytokine levels(P<0.05 or P<0.01) and alleviated the skin thickening and infiltration of inflammatory cells. However, the sediment group and the dialysate group had no obvious effect. SGD showed a good therapeutic effect on imiquimod-induced psoriasis in mice, and SAN demonstrated the effect equivalent to SGD in a dose-dependent manner. Therefore, we conclude that the SAN formed during decocting is the main active form of SGD, which can lower the levels of inflammatory cytokines, promote the normal differentiation of keratinocytes, and reduce the infiltration of inflammatory cells in the treatment of psoriasis lesions in mice.


Subject(s)
Drugs, Chinese Herbal , Mice , Animals , Imiquimod , Drugs, Chinese Herbal/pharmacology , Glycyrrhizic Acid , Chromatography, High Pressure Liquid/methods
2.
Opt Lett ; 39(7): 1965-7, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686650

ABSTRACT

Continuous wave 808 nm pump laser-induced thermal damage of polycrystalline transparent ceramic and crystalline Nd:YAG materials was investigated both experimentally and theoretically. The measured temperature agrees well with the theoretical simulation, and the maximum hoop stresses occur on the incident facet of the end-pumped rod at about √2 times of the pump beam radius w0, where the temperature gradient is the highest and the damage occurs first at this location. The fracture-limited laser intensity of ceramics was experimentally measured to be 6.4±0.6 kW/cm2, nearly 64% higher than that of the crystals (3.9±0.3 kW/cm2). The deduced thermal fracture stress for ceramic was 386±50 MPa, which is 64% higher than that of the crystals (235±16 MPa).

3.
Opt Lett ; 38(19): 3903-5, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24081084

ABSTRACT

A high efficiency and high peak power picosecond (ps) mid-infrared optical parametric amplifier with a new nonlinear crystal BaGa(4)Se(7) pumped by a 30 ps 1064 nm Nd:YAG laser is demonstrated for the first time. The maximum photon conversion efficiency of 56% from 1064 nm to 3.9 µm idler has been achieved at the pump energy of ~1.8 mJ. A maximum idler output of 830 µJ at 3.9 µm with peak power of ~27 MW was obtained at pump energy of ~9.1 mJ. Moreover, a 3-5 µm idler tuning range was demonstrated, with output energies of ~300 µJ at 5 µm and up to 1 mJ at 3 µm at ~8.2 mJ pump energy.

4.
Acta Pharmaceutica Sinica ; (12): 1829-1835, 2013.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-298003

ABSTRACT

The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering. Coumarin 6 was used as a fluorescent marker in the transport of nanoparticles investigated by confocal laser scanning microscopy. The transport of furanodiene (FDE) loaded nanoparticles was quantitively determined by high performance liquid chromatography. Colchicine and nocodazole were used in the transport study to explore the involved endocytosis mechanisms of nanoparticles. Distribution of the tight junction proteins ZO-1 was also analyzed by immunofluorescence staining. The results showed that the nanoparticles dispersed uniformly. The zeta potential of PLGA-NPs was negative, the mPEG-PLGA-NPs was close to neutral and the CS-PLGA-NPs was positive. The entrapment efficiency of FDE in all nanoparticles was higher than 75%. The transport capability of mPEG-PLGA-NPs across Caco-2/HT29-MTX co-cultured cells was higher than that of PLGA-NPs and CS-PLGA-NPs. Colchicine and nocodazole could significantly decrease the transport amount of nanoparticles. mPEG-PLGA-NPs could obviously reduce the distribution of ZO-1 protein than PLGA-NPs and CS-PLGA-NPs. The transport mechanism of PLGA-NPs and mPEG-PLGA-NPs were indicated to be a combination of endocytosis and paracellular way, while CS-PLGA-NPs mainly relied on the endocytosis way. PEG coating could shield the surface charge and enhance the hydrophilicity of PLGA nanoparticles, which leads mPEG-PLGA-NPs to possess higher anti-adhesion activity. As a result, mPEG-PLGA-NPs could penetrate the mucus layer rapidly and transport across Caco-2/HT29-MTX co-cultured cells.


Subject(s)
Humans , Biological Transport , Caco-2 Cells , Chitosan , Chemistry , Coated Materials, Biocompatible , Chemistry , Coculture Techniques , Drug Carriers , Furans , Chemistry , Metabolism , HT29 Cells , Heterocyclic Compounds, 2-Ring , Chemistry , Metabolism , Lactic Acid , Chemistry , Nanoparticles , Particle Size , Polyethylene Glycols , Chemistry , Polyglycolic Acid , Chemistry , Zonula Occludens-1 Protein , Metabolism
5.
Acta Pharmaceutica Sinica ; (12): 752-758, 2013.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-259554

ABSTRACT

To investigate the effects of particle size, mPEG molecular weight, coating density and zeta potential of monomethoxyl poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles on their transportation across the rat nasal mucosa, mPEG-PLGA-NPs with different mPEG molecular weights (M(r) 1 000, 2 000) and coating density (0, 5%, 10%, 15%) and chitosan coated PLGA-NP, which loaded coumarin-6 as fluorescent marker, were prepared with the nanoprecipitation method and emulsion-solvent evaporation method, and determine their particle size, zeta potential, the efficiency of fluorescent labeling, in vitro leakage rate and the stability with the lysozyme were determined. The effects of physical and chemical properties on the transmucosal transport of the fluorescent nanoparticles were investigated by confocal laser scanning microscopy (CLSM). The result showed that the size of nanoparticles prepared with nanoprecipitation method varied between 120 and 200 nm; the size of nanoparticles prepared with emulsion-solvent evaporation method varied between 420 and 450 nm. Nanoparticles dispersed uniformly; the zeta potential of PLGA-NPs was negative; mPEG-PLGA-NPs was close to neutral; chitosan coated PLGA-NPs was positive; and the efficiency of fluorescent labeling were higher than 80%. In vitro leak was less than 5% within 4 h and nanoparticles were basically stable with lysozyme. The CLSM results show that the transportation efficiency of mPEG-PLGA-NPs with a high PEG coating density and high mPEG molecular weight was significantly higher than that of uncoated PLGA nanoparticles and also that of chitosan coated PLGA-NPs (P < 0.05). The hydrophilcity, zeta potential and particle size of nanoparticles play important roles on the efficiency of mPEG-PLGA nanoparticles to transport across the rat nasal mucosa.


Subject(s)
Animals , Female , Male , Rats , Biological Transport , Chitosan , Chemistry , Drug Carriers , Chemistry , Microscopy, Confocal , Molecular Weight , Nanoparticles , Nasal Mucosa , Metabolism , Particle Size , Polyesters , Chemistry , Pharmacokinetics , Polyethylene Glycols , Chemistry , Pharmacokinetics , Rats, Sprague-Dawley
6.
Opt Lett ; 36(8): 1485-7, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21499398

ABSTRACT

A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO4 laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...