Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 8688-8696, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38323925

ABSTRACT

As a common water pollutant, Pb2+ has harmful effects on the nervous, hematopoietic, digestive, renal, cardiovascular, and endocrine systems. Due to the drawbacks of traditional adsorbents such as structural disorder, poor stability, and difficulty in introducing adsorption active sites, the adsorption capacity is low, and it is difficult to accurately study the adsorption mechanism. Herein, vinyl-functionalized covalent organic frameworks (COFs) were synthesized at room temperature, and sulfur-containing active groups were introduced by the click reaction. By precisely tuning the chemical structure of the sulfur-containing reactive groups through the click reaction, we found that the adsorption activity of the sulfhydryl group was higher than that of the sulfur atom in the thioether. Moreover, the incorporation of flexible linking groups was observed to enhance the adsorption activity at the active site. The maximum adsorption capacity of the postmodified COF TAVA-S-Et-SH for Pb(II) reached 303.0 mg/g, which is 2.9 times higher than that of the unmodified COF. This work not only demonstrates the remarkable potential of the "thiol-ene" click reaction for the customization of active adsorption sites but also demonstrates the remarkable potential of the "thiol-alkene" click reaction to explore the structure-effect relationship between the active adsorption sites and the metal ion adsorption capacity.

2.
Heliyon ; 9(9): e20125, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810165

ABSTRACT

Industrial parks have more complex O3 formation mechanisms due to a higher concentration and more dense emission of precursors. This study establishes an artificial neural network (ANN) model with good performance by expanding the moment and concentration changes of pollutants into general variables of meteorological factors and concentrations of pollutants. Finally, the O3 formation rules and concentration response to the changes of volatile organic compounds (VOCs) and nitrogen oxides (NOx) was explored. The results showed that the studied area belonged to the NOx-sensitive regime and the sensitivity was strongly affected by relative humidity (RH) and pressure (P). The concentration of O3 tends to decrease with a higher P, lower temperature (Temp), and medium to low RH when nitric oxide (NO) is added. Conversely, at medium P, high Temp, and high RH, the addition of nitrogen dioxide (NO2) leads to a larger decrease capacity in O3 concentration. More importantly, there is a local reachable maximum incremental reactivity (MIRL) at each certain VOCs concentration level which linearly increased with VOCs. The general maximum incremental reactivity (MIR) may lead to a significant overestimation of the attainable O3 concentration in NOx-sensitive regimes. The results can significantly support the local management strategies for O3 and the precursors control.

3.
Commun Earth Environ ; 4(1): 181, 2023.
Article in English | MEDLINE | ID: mdl-37250099

ABSTRACT

Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.

4.
Chemosphere ; 329: 138596, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37023904

ABSTRACT

When the multilayer adsorption of lead (Pb) and fulvic acid (FA) occurs on algal surface, the adsorption capacity of Pb on the algae will increase dramatically, thus increasing the environmental risk of Pb. However, the corresponding mechanism and the influence of environmental factors on the multilayer adsorption remain unclear. Here, microscopic observation methods and batch adsorption experiments were exactly designed to investigate the adsorption behavior of multilayer adsorption of Pb and FA on algal surface. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed that carboxyl groups were the major functional groups responsible for the binding of Pb ions in multilayer adsorption, and its number was more than that in monolayer adsorption. The solution pH, with an optimal pH of 7, was a critical factor influencing the occurrence of multilayer adsorption because it influences the protonation of the involved functional groups and determines the concentration of Pb2+ and Pb-FA in the solution. Increasing the temperature was beneficial for multilayer adsorption, with ΔH for Pb and FA varied from +17.12 to +47.68 kJ/mol and +16.19 to +57.74 kJ/mol, respectively. The multilayer adsorption of Pb and FA onto algal surface also followed the pseudo-second order kinetic model, but was extremely slower than the monolayer adsorption of Pb and FA by 30 times and 15 orders of magnitude, respectively. Therefore, the adsorption of Pb and FA in the ternary system had a different adsorption behavior than that in the binary system, which verified the presence of multilayer adsorption of Pb and FA and further support the multilayer adsorption mechanism. This work is important to provide data support for water ecological risk prevention and control of heavy metals.


Subject(s)
Chlorella , Metals, Heavy , Water Pollutants, Chemical , Chlorella/metabolism , Lead/metabolism , Adsorption , Metals, Heavy/metabolism , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 30(22): 63052-63064, 2023 May.
Article in English | MEDLINE | ID: mdl-36952168

ABSTRACT

Nitrogen (N) loss by surface runoff inevitably results in severe N pollution and eutrophication of aquatic ecosystems. In this study, surface runoff from different land uses in the East Tiaoxi River watershed was collected, and the N concentrations, sources and losses were measured using the dual isotope (δ15N-NO3- and δ18O-NO3-), a Bayesian isotopic mixing (SIAR) model and Soil Conservation Service Curve Number (SCS-CN) method. The results showed that the N concentrations in surface runoff from agricultural lands were higher than those from urban areas and forestlands, and nitrate (NO3-), particulate nitrogen (PN) and dissolved organic nitrogen (DON) were the major forms of N in surface runoff in the East Tiaoxi River watershed. The total loss rate of total nitrogen (TN) from surface runoff in the East Tiaoxi River watershed was 5.38 kg·ha-1·a-1, with NO3--N (46%) contributing the most to TN loss. The TN, and NO3--N loss rates in surface runoff from tea planting lands (21.08 kg·ha-1·a-1, 11.98 kg·ha-1·a-1) and croplands (16.93 kg·ha-1·a-1, 10.96 kg·ha-1·a-1) were high, those from vegetable lands and urban areas were medium, and those from economic and natural forestlands were low in the East Tiaoxi River watershed. The NO3--N contributions of chemical fertiliser (CF), soil N (SN), sewage/manure (SM), and atmospheric deposition (AD) in surface runoff in the East Tiaoxi River watershed were 124.32 × 103, 104.84 × 103, 82.25 × 103 and 58.69 × 103 kg·a-1, respectively. The N pollutant losses in surface runoff from agricultural lands (croplands with rice growing, vegetable lands and tea planting lands) were responsible for most of the N pollutants being transported into the East Tiaoxi River systems.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Nitrogen/analysis , Bayes Theorem , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Soil , Rivers , Tea , China , Nitrates/analysis , Nitrogen Isotopes/analysis
6.
Environ Sci Pollut Res Int ; 30(12): 33598-33608, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36484942

ABSTRACT

Land use is an effective way to reduce carbon emission in the recycling process of municipal sludge compost; meanwhile, heavy metals (HMs) in the sludge can be phytoextracted by ornamental plants. As an eco-friendly soil amendment, citric acid (CA) has been reported to be of great potential aid to phytoremediation, and its effect on ryegrass (Lolium perenne L.) extraction of HMs (Zn, Ni, Pb, Cu, and Cd) from municipal sewage sludge compost-amended (MSSC) soils has been investigated through pot experiments in the study. The growth of ryegrass was significantly promoted under 2 and 4 mmol kg-1 CA treatments. The concentrations of HMs in MSSC soil after 45-day planting were significantly reduced ([Formula: see text]), and they were further reduced except for Cu while CA treated. The acid-extractable fraction of HMs in the soil was increased significantly as CA treated, and further improvement could be found when CA dose increased, which was due to the decreased soil pH and the complexation of CA with metal ions. The phytoremediation factor (PRF) was proposed to assess the phytoremediation efficiency, which was obtained as a ratio of the product of the biomass and metal concentration of plant shoot between the CA-treated group and the control group. When the CA dose was 6 mmol kg-1, the average PRF of five heavy metals reached 2.29, and Cd was the highest (3.72), demonstrating that CA had great promotion on phytoremediation of heavy metals. This study made a contribution to the research of phytoremediation in sludge land use by demonstrating ryegrass as an ideal bioaccumulator for heavy metals, especially for Cd.


Subject(s)
Composting , Lolium , Metals, Heavy , Soil Pollutants , Sewage , Soil , Cadmium , Citric Acid , Soil Pollutants/analysis , Metals, Heavy/analysis
7.
J Hazard Mater ; 442: 130139, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36303361

ABSTRACT

An important concern during phytoremediation of heavy metal contamination in soils is the risk of leaching of heavy metals before they can be taken up by plants. The most effective method is to use heavy metal stabilizers. However, the stabilization without selectivity will greatly inhibit the phytoremediation effect of all heavy metals. A novel polymer with amino and mercapto groups named as AMP has been prepared as a new exclusive soil stabilizer for Pb. The adsorption of AMP toward Pb belonged to a monolayer adsorption and chemical process. The adsorption capacity of Pb increased with the increase of pH and initial Pb concentration, and obeyed the Langmuir model and pseudo-second-order model, respectively. An amazing maximum adsorption capacity of 588 mg Pb g-1 was reached for AMP when initial concentration was 300 mg Pb L-1, while K2 of 0.594 g mg-1 min-1 was obtained when the initial Pb concentration was 2.0 mg L-1. The distribution coefficient of AMP to Pb in the mixture of five heavy metals was as high as 3110 mL g-1, which was at least 7-fold greater than those of other heavy metals, exhibiting high selective to Pb. AMP showed a fast, large adsorption capacity and good selectivity due to the abundance of sulfhydryl and amino functional groups in the polymer and their interaction with metal ions. The effects of AMP in soil remediation were further tested by a soil column leaching experiment and a pot experiment, and the good stabilization effect of AMP on Pb and the less effect on bioavailability of other heavy metals at recommended doses were verified. This study was expected to solve the problem of leaching risk of the target metal such as Pb in sludge during land use. It provided a new idea of exclusive stabilization to assist phytoremediation of non-target heavy metals by reducing the leaching risk of some special target metal.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/analysis , Lead , Polymers , Metals, Heavy/analysis , Soil , Adenosine Monophosphate
8.
Sci Total Environ ; 854: 158539, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36075407

ABSTRACT

The accumulation and volatilization of Se by algae in surface water are important parts of the biogeochemical cycle of selenium but are also variable and complex. Experiments with 5-8 day of exposure under various temperatures, solution pH values, lighting regimes, and different initial Se concentrations were carried out to study the change in Se accumulation and volatilization behavior of algae. The study showed that algae accumulated and volatilized more Se under harsher environments, such as a lower pH, a shorter lighting time, and a higher Se load. The maximum average daily volatilization rate of Se was 234 ± 23 µg Se (g algae·d)-1, much greater than the values of previous studies. Therefore, in some Se-polluted water environments, when the pH of lakes is acidic, Se emissions to the atmosphere are much higher than currently estimated. Both the accumulation rate (Raccu) and volatilization rate (Rvol) of Se by algae were significantly negatively correlated with final pH, final OD, and residual Se in solution (Cres). Moreover, multiple linear regression equations were used to estimate the rates of Se accumulation and volatilization. This study provides theoretical basis data to quantify the contribution of selenium metabolism by algae to selenium biogeochemistry and a technical reference for the treatment of Se-containing wastewater.


Subject(s)
Microalgae , Selenium , Selenious Acid , Microalgae/metabolism , Selenium/metabolism , Volatilization , Plants/metabolism , Lakes , Water
9.
Sci Total Environ ; 838(Pt 1): 155949, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35588835

ABSTRACT

A clear understanding of the factors governing dual isotopes (δ15N-NO3- and δ18O-NO3-) in typhoons is essential for understanding their NO3- sources and its formation mechanisms. In this study, sequential precipitation samples during typhoons, including In-fa and Chanthu, were collected from Ningbo, Hangzhou and Huzhou. The chemical compositions, nitrogen and oxygen isotopes of NO3- and oxygen isotopes of H2O (δ18O-H2O) were measured. The results showed that the δ15N-NO3- and δ18O-NO3- values ranged from -6.3‰ to 6.0‰, and 38.0‰ to 66.5‰, respectively. The lower δ18O-NO3- values (less than 52‰) indicated the importance of peroxy radicals (RO2 or HO2) in NOx oxidation to NO3- formation pathways. By the Monte Carlo simulation of δ18O-NO3- values of typhoons, the calculated oxidation proportions of NO by RO2 (or HO2) during the OH· pathway ranged from 0% to 27% of In-fa and from 0% to 32% of Chanthu, respectively, in the three cities. More NOx emissions from marine microbial processes caused the lower δ15N-NO3- values of typhoons in Ningbo than those in Hangzhou and Huzhou. The variation in δ15N-NO3- values in sequential samples in In-fa reflected the decreased marine sources (lightning) and the increased anthropogenic sources in land (coal combustion and microbial N cycle) from Phrase I to Phrase II and III. Based on the improved Bayesian model with nitrogen isotopic fractionation, the contributions of lightning + biomass burning, coal combustion, mobile sources and the microbial N cycle were 35.7%, 22.5%, 27.1% and 14.7% in In-fa, and 28.3%, 32.3%, 28.0% and 11.4% in Chanthu, respectively, in the three cities, emphasizing the influence of marine NOx sources (lightning). The results highlight the importance of RO2 (or HO2) in NOx oxidation pathways in typhoons and provide valuable insight into the NOx sources of typhoons.


Subject(s)
Cyclonic Storms , Nitrates , Bayes Theorem , China , Cities , Coal , Environmental Monitoring/methods , Nitrates/analysis , Nitrogen , Nitrogen Isotopes/analysis , Nitrogen Oxides/analysis , Oxygen Isotopes/analysis
10.
Environ Monit Assess ; 194(3): 238, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35235063

ABSTRACT

Increased nitrogen (N) from urban stormwater runoff aggravates the deterioration of aquatic ecosystems as urbanisation develops. The sources and transport of nitrate (NO3-) in urban stormwater runoff were investigated by analysing different forms of N, water isotopes (δD-H2O and δ18O-H2O), and NO3- isotopes (δ15N-NO3- and δ18O-NO3-) in urban stormwater runoff in a residential area in Hangzhou, China. The results showed that the concentrations of total N and nitrate N in road runoff were higher than those in roof runoff. Moreover, high concentrations of dissolved organic N and particulate N led to high total nitrogen (TN) concentrations in road runoff (mean: 3.76 mg/L). The high δ18O-NO3- values (mean: + 60 ± 13.1‰) indicated that atmospheric deposition was the predominant NO3- source in roof runoff, as confirmed by the Bayesian isotope mixing model (SIAR model), contributing 84-98% to NO3-. Atmospheric deposition (34-92%) and chemical fertilisers (6.2-54%) were the main NO3- sources for the road runoff. The proportional contributions from soil and organic N were small in the road runoff and roof runoff. For the initial period, the NO3- contributions from atmospheric deposition and chemical fertilisers were higher and lower, respectively, than those in the middle and late periods in road runoff during storm events 3 and 4, while an opposite trend of road runoff in storm event 7 highlighted the influence of short antecedent dry weather period. Reducing impervious areas and more effective management of fertiliser application in urban green land areas were essential to minimize the presence of N in urban aquatic ecosystems.


Subject(s)
Nitrates , Water Pollutants, Chemical , Bayes Theorem , China , Ecosystem , Environmental Monitoring/methods , Isotopes/analysis , Nitrates/analysis , Nitrogen Isotopes/analysis , Water Pollutants, Chemical/analysis
11.
Chemosphere ; 295: 133790, 2022 May.
Article in English | MEDLINE | ID: mdl-35104547

ABSTRACT

Trace metal pollution in soils is one of the universal environmental problems in the world. Phytoremediation is a green, safe, ecological, and economic method to achieve continuous reduction of soil pollutants. Turfgrass is a plant with great landscape value and has considerable biomass when used for remediation of trace metal contaminated soil. However, its remediation ability needs to be improved in future application. The combined application of turfgrass, citric acid (CA) and auxin (gibberellin, GA3) were applied in the phytoremediation of an artificial nutritive soil derived from sludge, and a field scale orthogonal experiment (L9) was conducted to understand the interaction effect and obtain the optimum phytoremediation. Experimental results showed that the types and cultural patterns of turfgrass mainly determined plant height, root length and trace metal concentration in turfgrass, however CA treatment was prone to increase the aboveground biomass and the concentrations of most trace metals in turfgrasses, especially the concentration of Ni in turfgrass. GA3 spraying significantly increased the concentration of Cd in turfgrass. The culture patterns of turfgrass played 42.4% influence on acid-extractable Cd, while CA applying had 53.8% influence on the acid-extractable Ni. The annual phytoextraction amount of trace metals based on five mowing a year were proposed to assess the remediation ability of treatments, which of the combination treatment (T3, intercropping Zoysia matrella and Lolium perenne, and applying 400 mg kg-1 CA and 30 mg kg-1 GA3) were 1.6-2.1 times higher CK group. This research provides technical reference for intercropping turfgrass for remediation of trace metals in sludge-derived nutritive soil.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Trace Elements , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
12.
Chemosphere ; 291(Pt 2): 132838, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34762892

ABSTRACT

In the presence of dissolved organic matter, the mechanism of algal bioaccumulation of different metals is complex, and its significance goes far beyond the alga-metal binary system. In the presence of 10 and 20 mg L-1 fulvic acid (FA), the maximum tolerance concentrations of Chlorella pyrenoidosa to Ni were 0.25 and 0.26 mmol L-1, and to Zn were 0.62 and 0.68 mmol L-1, respectively. Within the maximum tolerance concentration ranges, the bioaccumulation behaviors of Ni and Zn were systematically compared in the presence of FA. The presence of FA shortened the adsorption equilibrium time and decreased the maximum bioaccumulation capacity of Ni and Zn. The bioaccumulation mechanism of Ni by C. pyrenoidosa was more inclined to monolayer adsorption, while the bioaccumulation mechanism of Zn was more inclined to multilayer adsorption. More details were revealed after the bioaccumulated metals were separated into adsorption and internalization states by 0.01 M EDTA elution. The presence of FA decreased more adsorbed Zn than the adsorbed Ni, due to the different competitive roles of FA in the ternary system of Ni and Zn, but the presence of FA increased the internalized Ni might due to the stronger complexation of Ni-FA. This research indicated that algae had unique bioaccumulation mechanisms for different metals in the presence of FA, which is of great significance to accurately evaluate the ecological risk posed by heavy metals.


Subject(s)
Chlorella , Metals, Heavy , Microalgae , Benzopyrans , Bioaccumulation , Dissolved Organic Matter , Zinc
13.
Sci Total Environ ; 803: 149857, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34496345

ABSTRACT

Owing to the local characteristics of stable nitrogen isotopes in nitrogen oxides (δ15N-NOx) emitted from biomass burning, the lack of data on δ15N-NOx values associated with biomass burning in China limits the use of this parameter in identifying and quantifying the sources of atmospheric nitrate (NO3-) and NOx. The results showed that the δ15N-NOx values of open burning and rural cooking stoves in China ranged from -3.7‰ to 3.1‰ and -11.9‰ to 1.5‰, respectively. The δ15N values of nine biomass fuel sources (δ15N-biomass) ranged from 0.1‰ to 4.1‰. Significant linear relationships between the δ15N-biomass values and δ15N-NOx values of open burning (δ15N-NOx = 1.1δ15N-biomass - 2.7; r2 = 0.63; p < 0.05) and rural cooking stoves (δ15N-NOx = 1.7δ15N-biomass - 9.8; r2 = 0.72; p < 0.01) suggested that the variations in δ15N-NOx values from biomass burning were mainly controlled by the biomass fuel source. The isotopic fractionation of nitrogen during the biomass burning process might have led to the higher δ15N-NOx values from open burning in comparison to rural cooking stoves. By combining the δ15N-NOx values of biomass burning with biomass burning emission inventory data, a model for calculating the δ15N-NOx values of biomass burning in different regions of China was established, and the estimated δ15N-NOx value of biomass burning at the national scale was -0.8 ± 1.2‰. But the limited δ15N-biomass values increase the uncertainty of model in national scale.


Subject(s)
Air Pollutants , Nitrogen , Air Pollutants/analysis , Biomass , China , Environmental Monitoring , Nitrogen Isotopes/analysis
14.
Toxics ; 11(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36668769

ABSTRACT

The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 µg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 µg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.

15.
Talanta ; 234: 122653, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364462

ABSTRACT

Deoxynivalenol (DON) contamination in wheat flour induces a number of adverse health effects to consumers and livestock, even at very low concentrations. Direct detection methods for massive screening of DON in wheat flour is still lacking. A new methodology integrating multi-molecular infrared spectroscopy (MM-IR) with two-trace two-dimensional correlation spectroscopy (2T-2DCOS) was developed for in-situ qualitative and quantitative determination of DON in wheat flour as a whole. Typical spectral variation of wheat flour samples with diverse concentration of DON were stepwise characterized by MM-IR and tiny spectral profile differences resulting from concentration variation of DON were visually disclosed by 2T-2DCOS. Based on the obtained key spectral features of DON, 180 of wheat flour samples with DON higher and lower than 1.00 mg/kg were undoubtedly classified by Principal Component Analysis (PCA) and Support Vector Machines (SVM) with an accuracy rate up to 100% (for Second derivative spectra consisted of selected bands, SD-SS). Furthermore, a robust quantitative prediction model was established based on partial least squares (PLS) of SD-SS (Rc: 0.998, RMSEC: 0.135; Rp: 0.968, RMSEP: 0.421), and its excellent predictive capacity of model was validated by both residual prediction deviation (RPD) value of 3.2 and t-test. It was demonstrated that the developed methodology was applicable for screening and quantitative detection of DON in wheat flour based on the novel correlation analysis methods (SD-2DCOS-IR and 2T-2DCOS-IR) with chemometrics tools, which could be utilized both at laboratory and industrial level for quality control purposes of a large wheat flour sample set.


Subject(s)
Flour , Triticum , Flour/analysis , Food Contamination/analysis , Humans , Least-Squares Analysis , Spectrophotometry, Infrared
16.
Environ Pollut ; 288: 117699, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34271519

ABSTRACT

Sludge landscaping after compost stabilization is a popular recycling process; however, until trace elements (TEs) are extracted by plants and reduced to safe concentrations, they present a potential exposure risk. Three garden plants, Liriope platyphylla Wang et Tang (L. platyphylla), Iris tectorum Maxim (I. tectorum), and Photinia x fraseri Dress (P. x fraseri), were selected for field experiments, and their ability to phytoremediate TEs and the promotion effect of citric acid (CA) were studied over 3 months of observation. Among the three kinds of plants, L. platyphylla had the highest biomass per unit soil area, and the CA treatment further increased the biomass of this plant per unit soil area as well as the uptake of TEs. When treated with 3 mmol kg-1 CA, L. platyphylla showed increases in the bioconcentration factors of Cu, Zn, Pb, and Cd by 24%, 63%, 27%, and 123%, respectively. Because of the large biomass and high concentrations of TEs, L. platyphylla had high phytoremediation indexes for Zn, Cu, Pb, Ni, and Cd, which reached 18.5, 3.7, 3.2, 2.2, and 0.4 mg m-2, respectively, and were further improved by 60%-187% by the CA treatment. These advantages indicate the potential usefulness of L. platyphylla for phytoremediation. The results provide basic data and technical support for the use of sludge-based compost and phytoremediation by garden plants.


Subject(s)
Composting , Metals, Heavy , Soil Pollutants , Trace Elements , Biodegradation, Environmental , Citric Acid , Gardens , Metals, Heavy/analysis , Sewage , Soil , Soil Pollutants/analysis
17.
Chemosphere ; 270: 128632, 2021 May.
Article in English | MEDLINE | ID: mdl-33757272

ABSTRACT

Landscaping of municipal sludge is a good choice to solve the sludge disposal problem, and EDTA treatment can effectively promote the uptake of heavy metals (HMs) by plants, but the heavy metal leaching process and its main control factors are still poorly understood during the sludge landscaping disposal. In this study, the migration behavior of HMs in artificial soil made from municipal sludge compost (MSC) were investigated using soil column experiments. After six leaching events for a total of one year's rainfall, the average reduction percentage of total phosphorus, total nitrogen, organic matter in the MSC artificial soil were 13.4%, 10.1%, and 7.8%, respectively, while those of copper, lead, zinc, cadmium, nickel were 12.9%, 8.37%, 11.5%, 5.94%, and 10.7%, respectively. Treating ethylenediaminetetraacetic acid (EDTA) to the MSC artificial soil further enhanced the leach index of HMs to different degrees. HM concentration in leachate were increased with peak times postponed. Though EDTA treatment increased HM concentrations in subsoil, it did not change their water washing efficiency. The retention of HMs in subsoil was related to properties of local soil and its interaction with leachate. The potential ecological risk was of quite strong risk category in the MSC artificial soil and rapidly decreased from moderate to slight risk in subsoil. Cadmium was the main contribution accounting for 46%-93% of ecological risk. For landscaping applications, the composition of MSC artificial soil and local soil, as well as the capacity of the surrounding water, needs to be considered.


Subject(s)
Composting , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Sewage , Soil , Soil Pollutants/analysis
18.
Sci Total Environ ; 778: 146297, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33721640

ABSTRACT

Nitrate (NO3-) is becoming a significant contributor to acid deposition in many cities in China. Based on the chemical compositions and stable isotopes of NO3- in precipitation (δ15N-NO3- and δ18O-NO3-), the NO3- sources and their formation pathways were determined to aid in reducing NOx emissions in Ningbo, an important port city. The acid rain frequency in Ningbo was 67%, and the mean SO42-/NO3- ratio was 1.07. The δ18O-NO3- (49.5‰-82.8‰) and δ15N-NO3- values (-4.3‰-2.7‰) both varied seasonally, with high values during the cold season and low values during the warm season. The seasonal variations in the δ18O-NO3- values were mainly controlled by the NO3- formation pathways, following the OH· pathway during the warm season and N2O5 pathway during the cold season. The Monte Carlo simulation results indicated that the contributions of the OH· pathway ranged from 28.3% to 75.4%, with the remainder contributed by the N2O5 pathway. The improved Bayesian model incorporating nitrogen (N) isotopic fractionation (Ԑ = 4‰) indicated that mobile sources, including ship emissions (35.0%) > coal combustion (26.0%) > biomass burning (20.0%) > soil emissions (19.0%), were the major sources of NOx emissions in Ningbo. The results indicate that the influence of isotopic fractionation on source apportionment must be considered in a Bayesian model.

19.
Huan Jing Ke Xue ; 42(4): 1696-1705, 2021 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-33742805

ABSTRACT

Different land uses have different impacts on the water quality of the region. Multiple isotopes (δD-H2O, δ18O-H2O, δ15N-NO3-, and δ18O-NO3-) and the SIAR (stable isotope analysis in R) model were applied to identify the nitrate sources and estimate the proportional contributions of multiple nitrate sources in a river in a typical urban area (the Grand Canal, Hangzhou) and a river in a typical forest and agricultural area (Yuying Riveri). The results indicated that there were different degrees of nitrogen pollution in the Grand Canal and Yuying River; NO3--N and NH4+-N are the predominant forms of nitrogen in the Grand Canal, and the primary form of nitrogen in Yuying River was NO3--N. There was an obvious linear relationship between the hydrogen and oxygen isotopes (R2=0.78). The δD-H2O and δ18O-H2O values for the Grand Canal and Yuying River were distributed along the local meteoric waterline, indicating that precipitation served as the primary water source in these rivers. All of the δ18O-NO3- values of the Grand Canal and Yuying River were lower than 15 ‰. It was revealed that nitrification, rather than denitrification, was the primary N cycling process in the two rivers. The δ15N-NO3-/δ18O-NO3- ratios of some of the samples from the Grand Canal ranged from 1.3 to 2.1, accompanied by low concentrations of DO and NO2-, indicating that denitrification existed in some sections of the Grand Canal. The δ15N-NO3- values of the samples from the Grand Canal (average:6.1‰) were higher than those from the Yuying River (average:2.3‰). The NO3- source contributions differed significantly between the Grand Canal and Yuying River. The contributions of NO3- sources in the Grand Canal were sewage/manure (37.0%) > soil nitrogen (35.7%) > chemical fertilizer (19.1%) > precipitation (8.2%), and those in the Yuying River were chemical fertilizer (46.1%) > soil nitrogen (22.8%) > precipitation (17.3%) > sewage/manure (13.8%). The contribution of the sewage/manure was substantially increased in the Grand Canal in the urban area with stronger human activities primarily due to the sporadic discharge of domestic sewage and urban runoff. Chemical fertilizer is the main NO3- source in the Yuying River near the forest and agricultural area, suggesting that the nitrogen pollution caused by agricultural non-point sources was extremely serious. The contribution of precipitation decreased in the areas of substantial human activities. The isotopic fractionation produced by denitrification was affected by the contributions of the NO3- sources, which were calculated by SIAR model. Sewage/manure and chemical fertilizer produced significant impacts, followed by soil nitrogen and precipitation.

20.
Talanta ; 222: 121325, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33167191

ABSTRACT

Simultaneously rapid detection of trace adulterants in the complex systems of food without extraction is considered highly challenging. Herein, a high-throughput and rapid methodology, multi-molecular infrared (MM-IR) spectroscopy was developed for simultaneous detection of multiple trace adulterants in food. Flour was applied to demonstrate the capabilities of MM-IR with spatial resolution, spectral qualitative and quantitative analysis. Signals of 5 trace adulterants (rongalit, potassium bromate, borax, aluminum potassium sulfate and fluorescent brighter) were spatially revealed by IR hyperspectral imaging with group-peak matching, and further unveiled spectrally with second derivative two dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution. Moreover, quantitative analysis of trace adulterants was conducted with partial least squares (PLS) modeling in ppm level. Composed of the above techniques and a series of resolution enhancement techniques (MW-2DCOS IR, 2T-2DCOS IR, etc.), MM-IR presented significant advantages on simultaneous detection of trace adulterants in food and therefore possessed the potential for food comprehensive analysis.


Subject(s)
Flour , Food Contamination , Flour/analysis , Food Contamination/analysis , Least-Squares Analysis , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...