Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
IEEE Trans Med Imaging ; 34(10): 2025-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25775487

ABSTRACT

Minimally invasive valvular intervention commonly requires intra-procedural navigation to provide spatial and temporal information of relevant cardiac structures and device components. Recently intra-procedural trans-esophageal echocardiography (TEE) has been exploited for this purpose due to its accessibility, low cost, ease of use, and real-time imaging capacity. However, the position and orientation of tissue targets relative to surgical tools can be challenging to perceive, particularly using 2D imaging planes. In this paper, we propose the use of CT images to provide a high-quality 3D context to enhance ultrasound images through image registration, providing an augmented guidance system with minimal impact on standard clinical workflow. We also describe an approach to generate synthetic 4D CT images through non-rigid registration of available ultrasound. This can be employed to avoid a requirement for higher radiation. Synthetic CT images were validated through direct comparison of synthetic and real multi-phase CT images. Validation of CT and ultrasound image registration was performed for both dynamic and synthetic CT image datasets. Our results demonstrated that the synthetically generated dynamic CT images provide similar anatomical representation for relevant cardiac anatomy relative to real dynamic CT images, and similar high registration accuracy that can be achieved for intra-procedural TEE to this versus real dynamic CT images.


Subject(s)
Echocardiography, Three-Dimensional/methods , Echocardiography, Transesophageal/methods , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , Myocardial Contraction/physiology , Databases, Factual , Humans , Mitral Valve/physiology , Radiography , Surgery, Computer-Assisted
2.
Med Phys ; 42(1): 456-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25563285

ABSTRACT

PURPOSE: To develop and validate a real-time mitral valve annulus (MVA) tracking approach based on biplane transesophageal echocardiogram (TEE) data and magnetic tracking systems (MTS) to be used in minimally invasive off-pump beating heart mitral valve repair (MVR). METHODS: The authors' guidance system consists of three major components: TEE, magnetic tracking system, and an image guidance software platform. TEE provides real-time intraoperative images to show the cardiac motion and intracardiac surgical tools. The magnetic tracking system tracks the TEE probe and the surgical tools. The software platform integrates the TEE image planes and the virtual model of the tools and the MVA model on the screen. The authors' MVA tracking approach, which aims to update the MVA model in near real-time, comprises of three steps: image based gating, predictive reinitialization, and registration based MVA tracking. The image based gating step uses a small patch centered at each MVA point in the TEE images to identify images at optimal cardiac phases for updating the position of the MVA. The predictive reinitialization step uses the position and orientation of the TEE probe provided by the magnetic tracking system to predict the position of the MVA points in the TEE images and uses them for the initialization of the registration component. The registration based MVA tracking step aims to locate the MVA points in the images selected by the image based gating component by performing image based registration. RESULTS: The validation of the MVA tracking approach was performed in a phantom study and a retrospective study on porcine data. In the phantom study, controlled translations were applied to the phantom and the tracked MVA was compared to its "true" position estimated based on a magnetic sensor attached to the phantom. The MVA tracking accuracy was 1.29 ± 0.58 mm when the translation distance is about 1 cm, and increased to 2.85 ± 1.19 mm when the translation distance is about 3 cm. In the study on porcine data, the authors compared the tracked MVA to a manually segmented MVA. The overall accuracy is 2.37 ± 1.67 mm for single plane images and 2.35 ± 1.55 mm for biplane images. The interoperator variation in manual segmentation was 2.32 ± 1.24 mm for single plane images and 1.73 ± 1.18 mm for biplane images. The computational efficiency of the algorithm on a desktop computer with an Intel(®) Xeon(®) CPU @3.47 GHz and an NVIDIA GeForce 690 graphic card is such that the time required for registering four MVA points was about 60 ms. CONCLUSIONS: The authors developed a rapid MVA tracking algorithm for use in the guidance of off-pump beating heart transapical mitral valve repair. This approach uses 2D biplane TEE images and was tested on a dynamic heart phantom and interventional porcine image data. Results regarding the accuracy and efficiency of the authors' MVA tracking algorithm are promising, and fulfill the requirements for surgical navigation.


Subject(s)
Echocardiography, Transesophageal/methods , Mitral Valve Annuloplasty/methods , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , Surgery, Computer-Assisted/methods , Algorithms , Animals , Equipment Design , Magnets , Mitral Valve/physiopathology , Models, Cardiovascular , Pattern Recognition, Automated/methods , Phantoms, Imaging , Software , Surgery, Computer-Assisted/instrumentation , Swine
3.
IEEE Trans Med Imaging ; 33(1): 159-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24107924

ABSTRACT

We propose a novel multi-region image segmentation approach to extract myocardial scar tissue from 3-D whole-heart cardiac late-enhancement magnetic resonance images in an interactive manner. For this purpose, we developed a graphical user interface to initialize a fast max-flow-based segmentation algorithm and segment scar accurately with progressive interaction. We propose a partially-ordered Potts (POP) model to multi-region segmentation to properly encode the known spatial consistency of cardiac regions. Its generalization introduces a custom label/region order constraint to Potts model to multi-region segmentation. The combinatorial optimization problem associated with the proposed POP model is solved by means of convex relaxation, for which a novel multi-level continuous max-flow formulation, i.e., the hierarchical continuous max-flow (HMF) model, is proposed and studied. We demonstrate that the proposed HMF model is dual or equivalent to the convex relaxed POP model and introduces a new and efficient hierarchical continuous max-flow based algorithm by modern convex optimization theory. In practice, the introduced hierarchical continuous max-flow based algorithm can be implemented on the parallel GPU to achieve significant acceleration in numerics. Experiments are performed in 50 whole heart 3-D LE datasets, 35 with left-ventricular and 15 with right-ventricular scar. The experimental results are compared to full-width-at-half-maximum and Signal-threshold to reference-mean methods using manual expert myocardial segmentations and operator variabilities and the effect of user interaction are assessed. The results indicate a substantial reduction in image processing time with robust accuracy for detection of myocardial scar. This is achieved without the need for additional region constraints and using a single optimization procedure, substantially reducing the potential for error.


Subject(s)
Gadolinium/administration & dosage , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Myocardial Infarction/pathology , Myocardium/pathology , User-Computer Interface , Algorithms , Contrast Media/administration & dosage , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...