Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535251

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, impacting the global economy and medical system due to its fast spread and extremely high infectivity. Efficient control of the spread of the disease relies on a fast, accurate, and convenient detection system for the early screening of the infected population. Although reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold-standard method for SARS-CoV-2 RNA analysis, it has complex experimental procedures and relies on expensive instruments and professional operators. In this work, we proposed a simple, direct, amplification-free lateral flow immunoassay (LFIA) with dual-mode detection of SARS-CoV-2 RNA via direct visualization as well as fluorescence detection. The viral RNA was detected by the designed DNA probes to specifically hybridize with the conserved open reading frame 1ab (ORF1ab), envelope protein (E), and nucleocapsid (N) regions of the SARS-CoV-2 genome to form DNA-RNA hybrids. These hybrids were then recognized by the dual-mode gold nanoparticles (DMNPs) to produce two different readout signals. The fluorescence characteristics of different sizes of GNPs were explored. Under the optimized conditions, the LFIA presented a linear detection range of 104-106 TU/mL with a limit of detection (LOD) of 0.76, 1.83, and 2.58 × 104 TU/mL for lentiviral particles carrying SARS-CoV-2 ORF1ab, E, and N motifs, respectively, in the fluorescent mode, which was up to 10 times more sensitive than the colorimetric mode. Furthermore, the LFIA exhibited excellent specificity to SARS-CoV-2 in comparison with other respiratory viruses. It could be used to detect SARS-CoV-2 in saliva samples. The developed LFIA represents a promising and convenient point-of-care method for dual-mode, rapid detection of SARS-CoV-2, especially in the periods with high infectivity.

2.
ACS Sens ; 9(1): 29-41, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38199966

ABSTRACT

Heart failure (HF) is a life-threatening syndrome. Timely and accurate bedside monitoring of the occurrence and progression of HF via measurements of multiple HF-related biomarkers remains a challenge. Here, we report a triple cascade quantum-strip (TCQS) sensing strategy for the rapid and selective multiplex-tracing of three clinically validated HF biomarkers (BNP/NT-proBNP/ST2) in serum. High selectivity to the three biomarkers is achieved by controlling the individual recognition ability of three target-specific quantum immunoprobes and tuning their simultaneous use to BNP/NT-proBNP/ST2 recognition without mutual interference, which allows the three biomarkers to be directly enriched from serum samples. Benefiting from the fast release-binding kinetics of target-bound immunoprobes on TCQS, recognizable fluorescent signals can be rapidly read out through combining with a self-designed smartphone-based portable reader. This rapid and simple profiling strategy results in good specificity and sensitivity with LODs of 0.097, 0.072, and 0.948 ng/mL for BNP, NT-proBNP, and ST2, respectively, which match the need of clinical applications. Real serum samples are tested with an accuracy of 92.86% for HF diagnosis, validating the capability of the smartphone-read TCQS for practical applications. In particular, the simultaneous detection of the TCQS sensing strategy for BNP/NT-proBNP/ST2 will facilitate the accurate monitoring of HF occurrence, risk stratification, progression, and prognosis as a powerful POCT tool.


Subject(s)
Heart Failure , Interleukin-1 Receptor-Like 1 Protein , Humans , Heart Failure/diagnosis , Natriuretic Peptide, Brain , Prognosis , Biomarkers , Limit of Detection
3.
iScience ; 26(12): 107962, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38094245

ABSTRACT

Although three-dimensional (3D) tumor models feature more accurate responses to drugs, the Matrigel scaffold affects the drug diffusion effect. Obtaining accurate drug spatiotemporal response characteristics is of great significance in the drug screening domain. However, the conventional cell-based sensors are difficult to perform spatiotemporal dynamics impedance monitoring of 3D cells and evaluate the anti-cancer pharmacological effect. Here, we proposed a biosensing platform involving a vertical impedance electrode array (VIEA) chip and a multichannel detection system. The platform can dynamically record 3D cell impedance in the vertical direction, which is consistent with time- and location-dependent drug penetration, closely related to spatiotemporal cell viability under drug effects. The subtle changes of impedance signals in different locations induced by drug diffusion can be detected, which demonstrates its high performance in drug systematic evaluation. The universal and high-content 3D cell biosensing platform is believed to have promising potential in pharmacodynamics investigation and preclinical drug screening.

4.
Microsyst Nanoeng ; 9: 57, 2023.
Article in English | MEDLINE | ID: mdl-37180453

ABSTRACT

Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatically improved the life expectancy of patients with NSCLC, concerns about TKI-induced cardiotoxicities have increased. AC0010, a novel third-generation TKI, was developed to overcome drug resistance induced by EGFR-T790M mutation. However, the cardiotoxicity of AC0010 remains unclear. To evaluate the efficacy and cardiotoxicity of AC0010, we designed a novel multifunctional biosensor by integrating microelectrodes (MEs) and interdigital electrodes (IDEs) to comprehensively evaluate cell viability, electrophysiological activity, and morphological changes (beating of cardiomyocytes). The multifunctional biosensor can monitor AC0010-induced NSCLC inhibition and cardiotoxicity in a quantitative, label-free, noninvasive, and real-time manner. AC0010 was found to significantly inhibit NCI-H1975 (EGFR-L858R/T790M mutation), while weak inhibition was found for A549 (wild-type EGFR). Negligible inhibition was found in the viabilities of HFF-1 (normal fibroblasts) and cardiomyocytes. With the multifunctional biosensor, we found that 10 µM AC0010 significantly affected the extracellular field potential (EFP) and mechanical beating of cardiomyocytes. The amplitude of EFP continuously decreased after AC0010 treatment, while the interval decreased first and then increased. We analyzed the change in the systole time (ST) and diastole time (DT) within a beating interval and found that the DT and DT/beating interval rate decreased within 1 h after AC0010 treatment. This result probably indicated that the relaxation of cardiomyocytes was insufficient, which may further aggravate the dysfunction. Here, we found that AC0010 significantly inhibited EGFR-mutant NSCLC cells and impaired cardiomyocyte function at low concentrations (10 µM). This is the first study in which the risk of AC0010-induced cardiotoxicity was evaluated. In addition, novel multifunctional biosensors can comprehensively evaluate the antitumor efficacy and cardiotoxicity of drugs and candidate compounds.

5.
Biosensors (Basel) ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38248393

ABSTRACT

Calcium ions participate in the regulation of almost all biological functions of the body, especially in cardiac excitation-contraction coupling, acting as vital signaling through ion channels. Various cardiovascular drugs exert their effects via affecting the ion channels on the cell membrane. The current strategies for calcium ion monitoring are mainly based on fluorescent probes, which are commonly used for intracellular calcium ion detection (calcium imaging) and cannot achieve long-term monitoring. In this work, an all-solid-state silicone-rubber ion-sensitive membrane was fabricated on light-addressable potentiometric sensors to establish a program-controlled field-effect-based ion-sensitive light-addressable potentiometric sensor (LAPS) platform for extracellular calcium ion detection. L-type calcium channels blocker verapamil and calcium channel agonist BayK8644 were chosen to explore the effect of ion channel drugs on extracellular calcium ion concentration in HL-1 cell lines. Simultaneously, microelectrode array (MEA) chips were employed to probe the HL-1 extracellular field potential (EFP) signals. The Ca2+ concentration and EFP parameters were studied to comprehensively evaluate the efficacy of cardiovascular drugs. This platform provides more dimensional information on cardiovascular drug efficacy that can be utilized for accurate drug screening.


Subject(s)
Calcium , Cardiovascular Agents , Silicon , Cell Line , Ion Channels
6.
Biosensors (Basel) ; 12(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36005015

ABSTRACT

Conventional immunocolorimetric sensing of biomolecules continues to be challenged with low sensitivity although its wide application as a diagnostic tool in medicine and biotechnology. Herein, we present a multifunctional immunocolorimetric sensing system for sensitive and high-throughput detection of B-type natriuretic peptide (BNP) with carbon-gold nanocomposite (CGNs) amplification. Using a "green" strategy, monodisperse carbon nanospheres (CNs) were successfully synthesized by glucose carbonization. A simple and efficient hydrothermal method was developed to assemble abundant gold nanoparticles (AuNPs) onto the surfaces of CNs. The resulting CGNs were characterized and utilized for biomarker detection with superior properties of easy manufacturing, good biocompatibility, satisfactory chemical stability, and high loading capacity for biomolecules. As a proof of concept, the as-prepared CGNs were conjugated with horseradish peroxidase-labeled antibody against BNP (CGNs@AntiBNP-HRP) functioning as the carrier, signal amplifier, and detector for the sensitive detection of BNP. Under optimal conditions, the established CGNs@AntiBNP-HRP immunoprobe remarkably enhanced the detection performance of BNP, achieving signal amplification of more than 9 times compared to the conventional method. Based on our self-developed bionic electronic eye (e-Eye) and CGNs@AntiBNP-HRP immunoprobe, the multifunctional sensing system displayed a wide dynamic linear range of 3.9-500 ng/mL and a LOD of 0.640 ng/mL for BNP detection with high specificity, good accuracy and reproducibility. This portable sensing system with enhanced performance demonstrates great potential for BNP detection in point of care applications, and offers a universal and reliable platform for in vitro biomarker detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanocomposites , Biomarkers , Biosensing Techniques/methods , Carbon , Electrochemical Techniques , Gold/chemistry , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Natriuretic Peptide, Brain , Reproducibility of Results
7.
Microsyst Nanoeng ; 8: 35, 2022.
Article in English | MEDLINE | ID: mdl-35450327

ABSTRACT

2D MXene-Ti3C2Tχ has demonstrated promising application prospects in various fields; however, it fails to function properly in biosensor setups due to restacking and anodic oxidation problems. To expand beyond these existing limitations, an effective strategy to for modifying the MXene by covalently grafting first-generation poly(amidoamine) dendrimers onto an MXene in situ (MXene@PAMAM) was reported herein. When used as a conjugated template, the MXene not only preserved the high conductivity but also conferred a specific 2D architecture and large specific surface areas for anchoring PAMAM. The PAMAM, an efficient spacer and stabilizer, simultaneously suppressed the substantial restacking and oxidation of the MXene, which endowed this hybrid with improved electrochemical performance compared to that of the bare MXene in terms of favorable conductivity and stability under anodic potential. Moreover, the massive amino terminals of PAMAM offer abundant active sites for adsorbing Au nanoparticles (AuNPs). The resulting 3D hierarchical nanoarchitecture, AuNPs/MXene@PAMAM, had advanced structural merits that led to its superior electrochemical performance in biosensing. As a proof of concept, this MXene@PAMAM-based nanobiosensing platform was applied to develop an immunosensor for detecting human cardiac troponin T (cTnT). A fast, sensitive, and highly selective response toward the target in the presence of a [Fe(CN)6]3-/4- redox marker was realized, ensuring a wide detection of 0.1-1000 ng/mL with an LOD of 0.069 ng/mL. The sensor's signal only decreased by 4.38% after 3 weeks, demonstrating that it exhibited satisfactory stability and better results than previously reported MXene-based biosensors. This work has potential applicability in the bioanalysis of cTnT and other biomarkers and paves a new path for fabricating high-performance MXenes for biomedical applications and electrochemical engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...