Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Commun Biol ; 7(1): 1129, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271957

ABSTRACT

In response to the escalating antibiotic resistance in multidrug-resistant pathogens, we propose an innovative phagemid-based capsid system to generate CRISPR-Cas13a-loaded antibacterial capsids (AB-capsids) for targeted therapy against multidrug-resistant Staphylococcus aureus. Our optimized phagemid system maximizes AB-capsid yield and purity, showing a positive correlation with phagemid copy number. Notably, an 8.65-fold increase in copy number results in a 2.54-fold rise in AB-capsid generation. Phagemids carrying terL-terS-rinA-rinB (prophage-encoded packaging site genes) consistently exhibit high packaging efficiency, and the generation of AB-capsids using lysogenized hosts with terL-terS deletion resulted in comparatively lower level of wild-type phage contamination, with minimal compromise on AB-capsid yield. These generated AB-capsids selectively eliminate S. aureus strains carrying the target gene while sparing non-target strains. In conclusion, our phagemid-based capsid system stands as a promising avenue for developing sequence-specific bactericidal agents, offering a streamlined approach to combat antibiotic-resistant pathogens within the constraints of efficient production and targeted efficacy.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Capsid , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Capsid/metabolism , Capsid/drug effects , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy
2.
Innovation (Camb) ; 5(5): 100688, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39285901
3.
J Agric Food Chem ; 72(37): 20343-20353, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39226432

ABSTRACT

Based on the modified cross-linking of the degradable natural polymers chitosan oligosaccharides (COS) and gelatin (GEL) via introduction of a functional bridge 3,3'-dithiodipropionic acid, this study constructed an environmentally responsive dinotefuran (DNF) delivery system (DNF@COS-SS-GEL). The introduction of the disulfide bond (-S-S-) endowed DNF@COS-SS-GEL with redox-responsive properties, allowing for the rapid release of pesticides when stimulated by glutathione (GSH) in the simulated insect. Compared with commercial DNF suspension concentrate (DNF-SC), DNF@COS-SS-GEL showed superior wet spreading and retention performance on cabbage leaves with a reduced contact angle (57°) at 180 s and 4-fold increased retention capacity after rainfall washout. Nanoencapsulation effectively improved the UV-photostability with only a 31.4% decomposition rate of DNF@COS-SS-GEL at 96 h. The small scale and large specific surface area resulted in excellent uptake and transportation properties in plants as well as higher bioactivity against Plutella xylostella larvae. This study will help promote sustainable agricultural development by reducing environmental pollution through improved pesticide utilization.


Subject(s)
Brassica , Chitosan , Oxidation-Reduction , Pesticides , Plant Leaves , Animals , Plant Leaves/chemistry , Plant Leaves/metabolism , Brassica/chemistry , Brassica/metabolism , Chitosan/chemistry , Pesticides/chemistry , Pesticides/pharmacology , Pesticides/metabolism , Moths/drug effects , Moths/metabolism , Moths/chemistry , Larva/growth & development , Larva/drug effects , Polymers/chemistry , Drug Delivery Systems/instrumentation , Neonicotinoids/chemistry , Neonicotinoids/metabolism , Neonicotinoids/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Gelatin/chemistry
4.
J Phys Chem Lett ; 15(33): 8600-8607, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39145599

ABSTRACT

The highly active and selective electrochemical CO2 reduction reaction (CO2RR) can be exploited to produce valuable chemicals and fuels and is also crucial for achieving clean energy goals and environmental remediation. Decorated single-atom catalysts (D-SACs), which feature synergistic interactions between the active metal site (M) and an axially decorated ligand, have been extensively explored for the CO2RR. Very recently, novel double-atom catalysts (DACs) featuring inverse sandwich structures were theoretically proposed and identified as promising CO2RR electrocatalysts. However, the experimental synthesis of DACs remains a challenge. To facilitate the fabrication and to realize the potential of these novel DACs, we designed a D-SAC system, denoted as M1@gra+Cuslab. This system features a graphene layer with a vacancy-anchored SAC, all stacked on a Cu(111) surface, thereby embodying a Cu slab-supported inverse sandwich M-graphene-Cu structure. Using density functional theory calculations, we evaluated the stability, selectivity, and activity of 27 M1@gra+Cuslab systems (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, or Au) and showed five M1@gra+Cuslab (M = Co, Ni, Cu, Rh, or Pd) systems exhibit optimal characteristics for the CO2RR and can potentially outperform their SAC and DAC counterparts. This study offers a new strategy for developing highly efficient CO2RR D-SACs with an inverse sandwich structural moiety.

5.
Adv Mater ; : e2405372, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135403

ABSTRACT

Hydrogel electrode interfaces have shown tremendous promise in the acquisition of surface electromyography (EMG) signals. However, the perspiration or moisture environments will trigger the deadhesion between hydrogel electrodes and human skin. Despite the hydrophobic/hydrophilic surfaces can perform the anti-moisture or adhesion respectively, it remains a challenge to integrally form a Janus hydrogel with homogeneous mechanical elasticity and electronic performance. Herein, a surface induction strategy is proposed to approach the hydrophobic/hydrophilic hydrogel surfaces. The hydrophobic interaction between surfactants and molds regulates the distribution of hydrophobic/hydrophilic monomers on the surface. The hydrophobic molds induce a hydrophilic hydrogel surface, while the hydrophilic molds induce a hydrophobic surface. It presents a new phenomenon of reversal wettability inducing and optional hydrogel surfaces. The integral Janus hydrogel can be easily obtained by the hydrophilic molds. Balance of adhesion, elasticity, and conductivity endows the hydrogel electrode patch with durable conformal adhesion and high-fidelity EMG signals even in the sweaty epidermis due to the asymmetric wettability surfaces. This hydrogel performs the quantitative description of muscle strength and accurate fatigue assessment. It offers a reliable candidate for future practical applications in continuous digital healthcare and intelligent human-machine interaction, even the Metaverse.

6.
Sci Rep ; 14(1): 16225, 2024 07 13.
Article in English | MEDLINE | ID: mdl-39003336

ABSTRACT

In response to the escalating global threat of antimicrobial resistance, our laboratory has established a phagemid packaging system for the generation of CRISPR-Cas13a-antimicrobial capsids targeting methicillin-resistant Staphylococcus aureus (MRSA). However, a significant challenge arose during the packaging process: the unintentional production of wild-type phages alongside the antimicrobial capsids. To address this issue, the phagemid packaging system was optimized by strategically incorporated silent mutations. This approach effectively minimized contamination risks without compromising packaging efficiency. The study identified the indispensable role of phage packaging genes, particularly terL-terS, in efficient phagemid packaging. Additionally, the elimination of homologous sequences between the phagemid and wild-type phage genome was crucial in preventing wild-type phage contamination. The optimized phagemid-LSAB(mosaic) demonstrated sequence-specific killing, efficiently eliminating MRSA strains carrying target antibiotic-resistant genes. While acknowledging the need for further exploration across bacterial species and in vivo validation, this refined phagemid packaging system offers a valuable advancement in the development of CRISPR-Cas13a-based antimicrobials, shedding light on potential solutions in the ongoing battle against bacterial infections.


Subject(s)
CRISPR-Cas Systems , Capsid , Methicillin-Resistant Staphylococcus aureus , Mutation , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Capsid/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics
7.
mBio ; 15(6): e0033924, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38988221

ABSTRACT

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , DNA-Directed RNA Polymerases , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , Oxacillin/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation, Missense , Cell Wall/drug effects , Cell Wall/metabolism , Cell Wall/genetics , Humans , Mutation , Metabolomics
8.
ACS Omega ; 9(27): 29471-29477, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005790

ABSTRACT

During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.

9.
PLoS One ; 19(7): e0304373, 2024.
Article in English | MEDLINE | ID: mdl-38959223

ABSTRACT

Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.


Subject(s)
Amylose , Pueraria , Starch , Water , Pueraria/chemistry , Starch/chemistry , Water/chemistry , Amylose/chemistry , Amylose/analysis , Crystallization , X-Ray Diffraction , Calorimetry, Differential Scanning
10.
Environ Sci Technol ; 58(24): 10696-10705, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38845125

ABSTRACT

Because ozone (O3) is a significant air pollutant, advanced O3 elimination technologies, particularly those under high-humidity conditions, have become an essential research focus. In this study, a nickel-iron layered double hydroxide (NiFe-LDH) was modified via intercalation with octanoate to develop an effective hydrophobic catalyst (NiFe-OAa-LDH) for O3 decomposition. The NiFe-OAa-LDH catalyst sustained its O3 decomposition rate of >98% for 48 h under conditions of 90% relative humidity, 840 L/(g·h) space velocity, and 100 ppm inlet O3 concentration. Moreover, it maintained a decomposition rate of 90% even when tested at a higher airflow rate of 2500 L/(g·h). Based on the changes induced by the Ni-OII to Ni-OIII bonds in NiFe-OAa-LDH during O3 treatment, catalytic O3 decomposition was proposed to occur in two stages. The first stage involved the reaction between the hydroxyl groups and O3, leading to the breakage of the O-H bonds, formation of NiOOH, and structural changes in the catalyst. This transformation resulted in the formation of abundant and stable hydrogen vacancies. According to density functional theory calculations, O3 can be effectively decomposed at the hydrogen vacancies with a low energy barrier during the second stage. This study provides new insights into O3 decomposition.


Subject(s)
Hydroxides , Ozone , Hydroxides/chemistry , Ozone/chemistry , Nickel/chemistry , Catalysis , Air Pollutants/chemistry
11.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752333

ABSTRACT

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Subject(s)
Biomass , Ivermectin , Pinus , Animals , Pinus/parasitology , Pinus/chemistry , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Nematoda/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Nanoparticles/chemistry , Humans
12.
Anal Chem ; 96(17): 6700-6706, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38621112

ABSTRACT

Photonic crystals with specific wavelengths can realize surface-enhanced excitation and emission intensities of fluorophores and enhance the fluorescence signals of fluorescent molecules. Herein, stretchable photonic crystals with good mechanochromic properties provide continuously adjustable forbidden wavelengths by stretching to change the lattice spacing, with reflectance peaks blue-shifted up to 110 nm to match indicators of different wavelengths and produce differentiated optical enhancement effects. Glycoproteins are significantly identified as clinical markers. However, the wide participation of glycoproteins in various life processes poses enormous complexity and critical challenges for rapid, facile, high-throughput, and accurate clinical analysis or health assessment. In this work, we proposed a stretchable photonic crystal-assisted glycoprotein identification approach for early ovarian cancer diagnosis. Stretchable photonic crystals can provide rich optical information to efficiently identify glycoproteins in complex matrices. A double-indicator fluorescence sensor was designed to respond to the protein trunk and oligosaccharide segment of glycoproteins separately for improved recognition accuracy. Seven typical glycoproteins could be discriminated from proteins, saccharides, or mixture interferents. Clinical ovarian cancer samples for early, intermediate, and advanced ovarian cancer and healthy subjects were verified with 100% accuracy. This strategy of stretchable photonic crystal-assisted glycoprotein identification provides an effective method for accurate, rapid ovarian cancer diagnosis and timely clinical treatment.


Subject(s)
Glycoproteins , Ovarian Neoplasms , Female , Ovarian Neoplasms/diagnosis , Humans , Glycoproteins/analysis , Photons , Fluorescent Dyes/chemistry , Biomarkers, Tumor/analysis , Crystallization
13.
ACS Appl Mater Interfaces ; 16(11): 14133-14143, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447141

ABSTRACT

The unique structural sensitivity of photonic crystals (PCs) endows them with stretchable or elastic tunability for light propagation and spontaneous emission modulation. Hydrogel PCs have been demonstrated to have biocompatibility and flexibility for potential human health detection and environmental security monitoring. However, current elastic PCs still possess a fixed elastic modulus and uncontrollable structural colors based on a tunable elastic modulus, posing considerable challenges for in situ detection, particularly in wearable or portable sensing devices. In this work, we introduced a novel chemo-mechanical transduction mechanism embedded within a photonic crystal nanomatrix, leading to the creation of structural colors and giving rise to a visual gustation sensing experience. By utilizing the captivating structural colors generated by the hydrogel PC, we employ abundant optical information to identify various analytes. The finite element analysis proved the electric field distribution in the PC matrix during stretch operations. The elastic-optical behaviors with various chemical cosolvents, including cations, anions, saccharides, or organic acids, were investigated. The mechanism of the Hofmeister effect regulating the elasticity of hydrogels was demonstrated with the network nanostructure of the hydrogels. The hydrogel PC matrix demonstrates remarkable capability in efficiently distinguishing a wide range of cations, anions, saccharides, and organic acids across various concentrations, mixtures, and even real food samples, such as tastes and soups. Through comprehensive research, a precise relationship between the structural colors and the elastic modulus of hydrogel PCs has been established, contributing to the biomatching elastic-optics platform for wearable devices, a dynamic environment, and clinical or health monitoring auxiliary.


Subject(s)
Hydrogels , Taste , Humans , Elastic Modulus , Anions , Cations
14.
Anal Chem ; 96(12): 4997-5005, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38483157

ABSTRACT

In the realm of clinical practice, the concurrent utilization of anticancer medications can enhance their overall therapeutic efficacy. However, it is crucial to acknowledge that the interactions among these anticancer drugs can potentially yield detrimental consequences on their intended outcomes. Consequently, the assessment of both anticancer potency and potential toxic side effects is greatly refined when multiple anticancer drugs are simultaneously detected and evaluated. Here, we designed a wearable electrochemical aptasensor array for monitoring multiple anticancer drugs in sweat. The integrated sensor array consists of three working electrodes modified with three different aptamers (Apt1, Apt2, and Apt3), a Au counter electrode, and a Ag/AgCl reference electrode. Molecular docking simulations were performed to show the binding affinities between three anticancer drugs and their corresponding aptamers. Various eigenvalues were derived from the square-wave voltammetry electrochemical signals, and these data sets were subjected to rigorous analysis through multivariate data analysis techniques. This analytical approach demonstrated exceptional performance by achieving flawless 100% accuracy in the precise identification of nine anticancer drugs consistently at uniform concentrations. Furthermore, the integrated wearable sensor array exhibited impressive capabilities, correctly recognizing all nine anticancer drugs with 100% accuracy and successfully distinguishing between these drugs in artificial sweat samples. The proposed sensor array presents good stability for 15 days. Flexibility tests showed stable device performance after 500 twisting cycles. This innovative wearable sensing array represents a novel approach for achieving real-time monitoring and precise adjustment of drug dosages. It offers invaluable insights for tailoring the treatment of anticancer drugs to individual patients, predicting both drug efficacy and potential adverse reactions within the field of clinical medicine.


Subject(s)
Biosensing Techniques , Sweat , Humans , Sweat/chemistry , Molecular Docking Simulation , Electrodes , Oligonucleotides/analysis , Electrochemical Techniques
15.
Anal Chem ; 96(3): 1205-1213, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38191284

ABSTRACT

Sweat has emerged as a compelling analyte for noninvasive biosensing technology because it contains a wealth of important biomarkers in hormones, organic biomacromolecules, and various ionic mixtures. These components offer valuable insights and can reflect an individual's physiological conditions. Here, we introduced an explainable deep learning (DL)-assisted wearable self-calibrating colorimetric biosensing analysis platform to efficiently and precisely detect the biomarker's concentration in sweat. Specifically, we have integrated the advantages of the colorimetric sensing method, adsorbing-swelling hydrogel, and explainable DL algorithms to develop an enzyme/indicator-immobilized colorimetric patch, which has reliable colorimetric sensing ability and excellent adsorbing-swelling function. A total of 5625 colorimetric images were collected as the analysis data set and assessed two DL algorithms and seven machine learning (ML) algorithms. Zn2+, glucose, and Ca2+ in human sweats could be facilely classified and quantified with 100% accuracy via the convolutional neural network (CNN) model, and the testing results of actual sweats via the DL-assisted colorimetric approach are 91.7-97.2% matching with the classical UV-vis spectrum. Class activation mapping (CAM) was utilized to visualize the inner working mechanism of CNN operation, which contributes to verify and explicate the design rationality of the noninvasive biosensing technology. An "end-to-end" model was established to ascertain the black box of the DL algorithm, promoted software design or principium optimization, and contributed facile indicators for health monitoring, disease prevention, and clinical diagnosis.


Subject(s)
Deep Learning , Humans , Sweat , Colorimetry , Neural Networks, Computer , Algorithms
16.
Anal Chem ; 96(4): 1630-1639, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38217493

ABSTRACT

Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.


Subject(s)
Aflatoxins , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Coloring Agents , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry
17.
ACS Omega ; 8(48): 45348-45357, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075752

ABSTRACT

Here, we paved a new way to evaluate the susceptibility of M-N4-based single-atom catalysts (SACs) to sulfur poisoning in Li-S batteries. The strong binding strength of M-S in Ti-N4- and V-N4-based SACs is attributed to the high bond order, pronounced d-p hybridization, and differential charge density. However, overly strong binding strength of M-S can create a high energy barrier that prevents the detachment of covered S atoms and induces sulfur poisoning. This can significantly impede the exposure of catalysts to residual reactants during subsequent charge-discharge cycles. Moreover, the sulfur poisoning will dramatically depress the overall catalytic performance of the SACs during the subsequent charge-discharge process, indicating that some compromise should be made between the high catalytic performance and the sulfur poisoning in designing SACs for Li-S batteries.

18.
Opt Express ; 31(24): 40490-40497, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041348

ABSTRACT

In this paper, we have investigated optical bistability modulation of transmitted beam that can be achieved by graphene sandwich structure with topological interface modes at terahertz frequency. Graphene with strong nonlinear optical effect was combined with sandwich photonic crystal to form a new sandwich structure with topological interface modes. The light-limiting properties of the topological interface modes, as well as its high unidirectionality and high transmission efficiency, all contribute positively to the reduction of the optical bistability threshold. In addition, the topological interface modes can effectively ensure the stability of the two steady state switching in the case of external interference. Moreover, optical bistability is closely related to the incident angle, the Fermi energy, the relaxation time, and the number of layers of graphene. Through parameter optimization, optical bistability with threshold of 105 V/m can be obtained, which has reached or is close to the range of the weak field.

19.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37947734

ABSTRACT

Nitrate electroreduction reaction to ammonia (NO3ER) holds great promise for both nitrogen pollution removal and valuable ammonia synthesis, which are still dependent on transition-metal-based catalysts at present. However, metal-free catalysts with multiple advantages for such processes have been rarely reported. Herein, by means of density functional theory (DFT) computations, in which the Perdew-Burke-Ernzerhof (PBE) functional is obtained by considering the possible van der Waals (vdW) interaction using the DFT+D3 method, we explored the potential of several two-dimensional (2D) silicon carbide monolayers as metal-free NO3ER catalysts. Our results revealed that the excellent synergistic effect between the three Si active sites within the Si3C monolayer enables the sufficient activation of NO3- and promotes its further hydrogenation into NO2*, NO*, and NH3, making the Si3C monolayer exhibit high NO3ER activity with a low limiting potential of -0.43 V. In particular, such an electrochemical process is highly dependent on the pH value of the electrolytes, in which acidic conditions are more favorable for NO3ER. Moreover, ab initio molecular dynamics (AIMD) simulations demonstrated the high stability of the Si3C monolayer. In addition, the Si3C monolayer shows a low formation energy, excellent electronic properties, a superior suppression effect on competing reactions, and high stability, offering significant advantages for its experimental synthesis and practical applications in electrocatalysis. Thus, a Si3C monolayer can perform as a promising NO3ER catalyst, which would open a new avenue to further develop novel metal-free catalysts for NO3ER.

20.
Virol Sin ; 38(4): 620-626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406815

ABSTRACT

A rapid and accurate COVID-19 diagnosis is a prerequisite for blocking the source of infection as soon as possible and taking the appropriate medical action. Herein, we developed GeneClick, a device for nucleic acid self-testing of SARS-CoV-2, consisting of three modules: a sampling kit, a microfluidic chip-based disposable cartridge, and an amplification reader. In addition, we evaluated the clinical performance of GeneClick using 2162 nasal swabs collected at three medical institutions, using three commercial RT-qPCR kits and an antigen self-test as references. Compared to RT-qPCR, the sensitivity and specificity of the GeneClick assay were 97.93% and 99.72%, respectively, with a kappa value of 0.979 (P â€‹< â€‹0.01). Of the 2162 samples, 2076 were also tested for SARS-CoV-2 antigens. Among the 314 positive samples identified by GeneClick assay, 63 samples were undetected by antigen tests. Overall, the GeneClick nucleic acid self-test demonstrated higher accuracy than the antigen-based detection. Based on the additional features, including simple operation, affordable price, portable device, and reliability of smartphone APP-driven sampling and result reporting, GeneClick offers a powerful tool for field-based SARS-CoV-2 detection in primary healthcare institutions or at-home use.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Self-Testing , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL