Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(19): 193601, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804949

ABSTRACT

Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong-coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.

2.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38563787

ABSTRACT

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Subject(s)
Alginates , Gastrointestinal Microbiome , Oligosaccharides , Alginates/metabolism , Oligosaccharides/metabolism , Mice , Animals , Humans , Colitis/microbiology , Colitis/chemically induced , Mice, Inbred C57BL , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Dextran Sulfate , Dietary Fiber/metabolism
3.
Appl Microbiol Biotechnol ; 108(1): 22, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38159121

ABSTRACT

Three new strains of dissimilatory perchlorate-reducing bacteria (DPRB), QD19-16, QD1-5, and P3-1, were isolated from an active sludge. Phylogenetic trees based on 16S rRNA genes indicated that QD19-16, QD1-5, and P3-1 belonged to Brucella, Acidovorax, and Citrobacter, respectively, expanding the distribution of DPRB in the Proteobacteria. The three strains were gram-negative and facultative anaerobes with rod-shaped cells without flagella, which were 1.0-1.6 µm long and 0.5-0.6 µm wide. The three DPRB strains utilized similar broad spectrum of electron donors and acceptors and demonstrated a similar capability to reduce perchlorate within 6 days. The enzyme activity of perchlorate reductase in QD19-16 toward chlorate was higher than that toward perchlorate. The high sequence similarity of the perchlorate reductase operon and chlorite dismutase genes in the perchlorate reduction genomic islands (PRI) of the three strains implied that they were monophyletic origin from a common ancestral PRI. Two transposase genes (tnp1 and tnp2) were found in the PRIs of strain QD19-16 and QD1-5, but were absent in the strain P3-1 PRI. The presence of fragments of IR sequences in the P3-1 PRI suggested that P3-1 PRI had previously contained these two tnp genes. Therefore, it is plausible to suggest that a common ancestral PRI transferred across the strains Brucella sp. QD19-16, Acidovorax sp. QD1-5, and Citrobacter sp. P3-1 through horizontal gene transfer, facilitated by transposases. These results provided a direct evidence of horizontal gene transfer of PRI that could jump across phylogenetically unrelated bacteria through transposase. KEY POINTS: • Three new DPRB strains can effectively remove high concentration of perchlorate. • The PRIs of three DPRB strains are acquired from a single ancestral PRI. • PRIs are incorporated into different bacteria genome through HGT by transposase.


Subject(s)
Genomic Islands , Perchlorates , Phylogeny , Oxidation-Reduction , Gene Transfer, Horizontal , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Oxidoreductases/genetics , Ecosystem , Transposases/genetics
4.
Int J Gen Med ; 16: 5449-5465, 2023.
Article in English | MEDLINE | ID: mdl-38021066

ABSTRACT

Background: Lung adenocarcinoma (LUAD) has high morbidity and mortality. Current studies indicate nucleoporin 107 (NUP107) is involved in the construction of nuclear pore complex, and NUP107 overexpression contributes to the growth and development in most types of cancers, but its effect in LUAD has not been elucidated. Methods: Differences in NUP107 expression were investigated using the Cancer Genome Atlas (TCGA) and multiple Gene Expression Omnibus (GEO) data sets. Enrichment analysis were implemented to probe the NUP107 function. The association of NUP107 with the degree of immune cell infiltration was investigated by the TIMER database, single-sample gene set enrichment analysis (ssGSEA), and ESTIMATE. The association of NUP107 expression with tumor mutation burden (TMB), TP53, and immune checkpoint was analyzed. Single-cell RNA sequencing data were used to detect NUP107 expression in different cell clusters. Finally, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) to prove the difference of NUP107 expression. Results: NUP107 was overexpressed in LUAD and mainly expressed in cancer stem cell (CSC). Overexpression of NUP107 in LUAD suggested a poorer prognosis. Functional enrichment analysis pointed out that NUP107 was mainly linked to the regulation of cell cycle. Both immune cell infiltration and TMB were found to be in connection with NUP107. Cases in the group with high NUP107 expression had poorer immune infiltration, but had higher expression of immune checkpoints, TMB, and proportion of TP53 mutations. Conclusion: NUP107 is a sensitive diagnostic and prognostic factor for LUAD and may be involved in tumor progression through its effects on cell cycle and immune infiltration.

5.
Front Microbiol ; 14: 1143017, 2023.
Article in English | MEDLINE | ID: mdl-37152729

ABSTRACT

Plastoglobules, which are lipoprotein structures surrounded by a single hydrophobic phospholipid membrane, are subcellular organelles in plant chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic studies indicated that plastoglobules are involved in carotenoid metabolism and storage. In this study, one of the plastid lipid-associated proteins (PAP), the major protein in plastoglobules, was selected and overexpressed in Phaeodactylum tricornutum. The diameter of the plastoglobules in mutants was decreased by a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased by a mean of 51.2%. All mutants exhibited morphological differences from the wild-type, including a prominent increase in the transverse diameter. Moreover, the unsaturated fatty acid levels were increased in different mutants, including an 18.9-59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis revealed that PAP expression and the morphological changes altered xanthophyll synthesis and storage, which affected the assembly of the fucoxanthin chlorophyll a/c-binding protein and expression of antenna proteins as well as reduced the non-photochemical quenching activity of diatom cells. Therefore, metabolic regulation at the suborganelle level can be achieved by modulating PAP expression. These findings provide a subcellular structural site and target for synthetic biology to modify pigment and lipid metabolism in microalgae chassis cells.

6.
Nano Lett ; 23(11): 4991-4996, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37205843

ABSTRACT

The omnipresence of hexagonal boron nitride (hBN) in devices embedding two-dimensional materials has prompted it as the most sought after platform to implement quantum sensing due to its testing while operating capability. The negatively charged boron vacancy (VB-) in hBN plays a prominent role, as it can be easily generated while its spin population can be initialized and read out by optical means at room-temperature. But the lower quantum yield hinders its widespread use as an integrated quantum sensor. Here, we demonstrate an emission enhancement amounting to 400 by nanotrench arrays compatible with coplanar waveguide (CPW) electrodes employed for spin-state detection. By monitoring the reflectance spectrum of the resonators as additional layers of hBN are transferred, we have optimized the overall hBN/nanotrench optical response, maximizing thereby the luminescence enhancement. Based on these finely tuned heterostructures, we achieved an enhanced DC magnetic field sensitivity as high as 6 × 10-5 T/Hz1/2.

7.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37114919

ABSTRACT

Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.

8.
Appl Microbiol Biotechnol ; 107(5-6): 1751-1764, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36800030

ABSTRACT

Lam16A is a novel GH16 ß-1,3-1,4-lichenase isolated from the genus Caldicellulosiruptor which can utilize untreated carbohydrate components of plant cell walls. Its catalytic module has been characterized that the six carbohydrate-binding modules (CBMs) were queued in the C-terminus, but their roles were still unclear. Here, full-length and CBM-truncated mutants of Lam16A were purified and characterized through heterologous expression in Escherichia coli. The profiles of these proteins, including the enzyme activity, degrading efficiency, substrate-binding affinity, and thermostability, were explored. Full-length Lam16A with six CBMs showed excellent thermostability and the highest activity against barley ß-glucan and laminarin with optimum pH of 6.5. The CBMs stimulated degrading ability of the catalytic module, especially against ß-1,3(4)-glucan-based polysaccharides. The released products from ß-1,3-1,4-glucan by Lam16A or its truncated mutants revealed an endo-type glycoside hydrolase. Lam16As exhibited strong binding affinities to the insoluble polysaccharides, especially Lam16A-1CBM. The degradation of yeast cell walls by Lam16A enzyme solution relative to the control reduced the absorbance values at OD800 by ~ 85% ± 1.2, enabling the release of up to ~ 0.057 ± 0.0039 µg/mL of the cytoplasmic protein into the supernatant, lowering the viability of the cells by ~ 70.3% ± 6.9, thus causing significant damage in the cell wall structure. Taken together, CBMs could influence the substrate specificity, thermal stability, and binding affinity of ß-1,3-1,4-glucanase. These results demonstrate the great potential of these enzymes to promote the bioavailability of ß-1,3-glucan oligosaccharides for health benefits. KEY POINTS: • Carbohydrate-binding modules strongly influenced the enzyme activity and binding affinity, and further impacted glycoside hydrolase activity. • Lam16A enzymes have sufficient ability to hydrolyze ß-1,3-1,4-glucan-based polysaccharides. • Lam16As provide a powerful tool to promote the bioavailability of ß-1,3-glucan oligosaccharides.


Subject(s)
Polysaccharides , beta-Glucans , Polysaccharides/metabolism , beta-Glucans/metabolism , Glycoside Hydrolases/metabolism , Oligosaccharides , Substrate Specificity
9.
Front Bioeng Biotechnol ; 11: 1332185, 2023.
Article in English | MEDLINE | ID: mdl-38304106

ABSTRACT

Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production. The optimal pretreatment conditions (diluted sulfuric acid concentration (% w/v), treatment time (min)) for SCB (3.36, 113), RS (3.77, 109), and CC (3.89, 112) and the optimal enzymatic hydrolysis conditions (pretreated solid concentration (% w/v), hydrolysis time (h)) for SCB (12.1, 93), RS (10.9, 61), and CC (12.0, 90) were achieved. CC xylose-rich and CC glucose-rich hydrolysates obtained from the respective optimal condition of pretreatment and enzymatic hydrolysis steps were used for xylitol and ethanol production. The statistically significant highest (p ≤ 0.05) xylitol and ethanol yields were 65% ± 1% and 86% ± 2% using Candida magnoliae TISTR 5664. C. magnoliae could statistically significantly degrade (p ≤ 0.05) the inhibitors previously formed during the pretreatment step, including up to 97% w/w hydroxymethylfurfural, 76% w/w furfural, and completely degraded acetic acid during the xylitol production. This study was the first report using the mixed whole cells harvested from xylitol and ethanol production as a biocatalyst in PAC biotransformation under a two-phase emulsion system (vegetable oil/1 M phosphate (Pi) buffer). PAC concentration could be improved by 2-fold compared to a single-phase emulsion system using only 1 M Pi buffer.

10.
Ecol Evol ; 12(3): e8663, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35261750

ABSTRACT

The phylogenetic structure of the genus Niviventer has been studied based on several individual mitochondrial and nuclear genes, but the results seem to be inconsistent. In order to clarify the phylogeny of Niviventer, we sequenced the complete mitochondrial genome of white-bellied rat (Niviventer andersoni of the family Muridae) by next-generation sequencing. The 16,291 bp mitochondrial genome consists of 22 transfer RNA genes, 13 protein-coding genes (PCGs), two ribosomal RNA genes, and one noncoding control region (D-Loop). Phylogenetic analyses of the nucleotide sequences of all 13 PCGs, PCGs minus ND6, and the entire mitogenome sequence except for the D-loop revealed well-resolved topologies supporting that N. andersoni was clustered with N. excelsior forming a sister division with N. confucianus, which statistically rejected the hypothesis based on the tree of cytochrome b (cytb) gene that N. confucianus is sister to N. fulvescens. Our research provides the first annotated complete mitochondrial genome of N. andersoni, extending the understanding about taxonomy and mitogenomic evolution of the genus Niviventer.

11.
Adv Appl Microbiol ; 117: 1-34, 2021.
Article in English | MEDLINE | ID: mdl-34742365

ABSTRACT

Carbon one industry flux gas generated from fossil fuels, various industrial and domestic waste, as well as lignocellulosic biomass provides an innovative raw material to lead the sustainable development. Through the chemical and biological processing, the gas mixture composed of CO, CO2, and H2, also termed as syngas, is converted to biofuels and high-value chemicals. Here, the syngas fermentation process is elaborated to provide an overview. Sources of syngas are summarized and the influences of impurities on biological fermentation are exhibited. Acetogens and carboxydotrophs are the two main clusters of syngas utilizing microorganisms, their essential characters are presented, especially the energy metabolic scheme with CO, CO2, and H2. Synthetic biology techniques and microcompartment regulation are further discussed and proposed to create a high-efficiency cell factory. Moreover, the influencing factors in fermentation and products in carboxylic acids, alcohols, and others such like polyhydroxyalkanoate and poly-3-hydroxybutyrate are addressed. Biological fermentation from carbon one industry flux gas is a promising alternative, the latest scientific advances are expatiated hoping to inspire more creative transformation.


Subject(s)
Biofuels , Carbon Cycle , Bacteria/genetics , Carbon , Fermentation
13.
J Photochem Photobiol B ; 221: 112237, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34116318

ABSTRACT

Nannochloropsis oceanica is widely used as a model photosynthetic chassis to produce fatty acids and carotenoid pigments. However, intense light typically causes excessive generation of reactive oxygen species (ROS) and photorespiration in microalgal cells, which results in decreased cell growth rate and unsaturated fatty acid content. In this study, the Vitreoscilla hemoglobin gene (vgb) was introduced into N. oceanica cells and expressed by using the light-harvesting complex promoter and its signal peptide. Compared with wild type (WT), the growth rate of transformants increased by 7.4%-18.5%, and the eicosapentaenoic acid content in an optimal transformant increased by 21.0%. Correspondingly, the intracellular ROS levels decreased by 56.9%-70.0%, and the catalase content in transformants was about 1.8 times that of WT. The photorespiration level of transformants was reduced by the measurement and calculation of the dissolved oxygen concentration under the condition of light-dark transition. The expression level of the key genes related to the photorespiration pathway in transformants was more than 80% lower than that in WT. These results indicated that Vitreoscilla hemoglobin could improve microalgal growth by reducing ROS damage and modulating photorespiration under stress conditions.


Subject(s)
Bacterial Proteins/metabolism , Light , Stramenopiles/metabolism , Truncated Hemoglobins/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/genetics , Catalase/metabolism , Light-Harvesting Protein Complexes/genetics , Photosynthesis/radiation effects , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Protein Sorting Signals/genetics , Reactive Oxygen Species/metabolism , Stramenopiles/radiation effects , Truncated Hemoglobins/genetics
14.
Mar Drugs ; 19(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920502

ABSTRACT

Fucoxanthin, which is widely found in seaweeds and diatoms, has many benefits to human health, such as anti-diabetes, anti-obesity, and anti-inflammatory physiological activities. However, the low content of fucoxanthin in brown algae and diatoms limits the commercialization of this product. In this study, we introduced an excitation light at 488 nm to analyze the emitted fluorescence of Phaeodactylum tricornutum, a diatom model organism rich in fucoxanthin. We observed a unique spectrum peak at 710 nm and found a linear correlation between fucoxanthin content and the mean fluorescence intensity. We subsequently used flow cytometry to screen high-fucoxanthin-content mutants created by heavy ion irradiation. After 20 days of cultivation, the fucoxanthin content of sorted cells was 25.5% higher than in the wild type. This method provides an efficient, rapid, and high-throughput approach to screen fucoxanthin-overproducing mutants.


Subject(s)
Diatoms/metabolism , Flow Cytometry , Mutation , Xanthophylls/metabolism , Biomarkers/metabolism , Diatoms/genetics , Diatoms/radiation effects , Heavy Ions , High-Throughput Screening Assays , Time Factors , Workflow
15.
Biochem Biophys Res Commun ; 547: 111-117, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33610038

ABSTRACT

Alginate is the structural polysaccharide of the cell wall of brown algae, which is an important carbon source for marine life. The depolymerization of alginate is dependent on alginate lyases. Recent studies showed that the alginate utilization ability had been obtained by human gut microbes. In contrast to the great number of studies on alginate lyases from marine/soil organisms, studies on alginate lyases from gut microbes are still limited. Here, the structure of a polysaccharide lyase family 6 (PL6) alginate lyase from human gut microbe Bacteroides clarus was solved by X-ray crystallography, which represents the cluster of two-domain PL6 alginate lyases from Bacteroidetes. Similar with the two-domain alginate lyase AlyGC originated from marine bacterium, both the N terminal domain (NTD) and C terminal domain (CTD) of BcAlyPL6 show right-handed parallel ß-helix fold. However, unlike AlyGC, which forms a homodimer, BcAlyPL6 functions as a monomer. Biochemical analysis indicates that the substrate binding affinity is mainly contributed by the NTD while the CTD of BcAlyPL6 is involved in the formation of -1 subsite, which is essential for substrate turnover rate. Furthermore, CTD is involved in shaping a closed catalytic pocket, and deletion of it leads to increased activity towards highly polymerized substrate. Structure comparison of PL6 family alginate lyases implies that the linkers of two-domain alginate lyases might have evolutionary relationship with the N/C terminal extension of single-domain lyases.


Subject(s)
Bacteroides/enzymology , Gastrointestinal Microbiome , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Alginates/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalysis , Crystallography, X-Ray , Humans , Phylogeny , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity
17.
Appl Environ Microbiol ; 86(16)2020 08 03.
Article in English | MEDLINE | ID: mdl-32532871

ABSTRACT

Pectin deconstruction is the initial step in breaking the recalcitrance of plant biomass by using selected microorganisms that encode pectinolytic enzymes. Pectate lyases that cleave the α-1,4-galacturonosidic linkage of pectin are widely used in industries such as papermaking and fruit softening. However, there are few reports on pectate lyases with good thermostability. Here, two pectate lyases (CbPL3 and CbPL9) from a hyperthermophilic bacterium, Caldicellulosiruptor bescii, belonging to family 3 and family 9 polysaccharide lyases, respectively, were investigated. The biochemical properties of the two CbPLs were shown to be similar under optimized conditions of 80°C to 85°C and pH 8 to 9. However, the degradation products from pectin and polygalacturonic acids (pGAs) were different. A family 66 carbohydrate-binding module (CbCBM66) located in the N terminus of the two CbPLs shares 100% amino acid identity. A CbCBM66-truncated mutant of CbPL9 showed lower activities than the wild type, whereas CbPL3 with a CbCBM66 knockout portion was reported to have enhanced activities, thereby revealing the different effect of CbCBM66. Prediction by the I-TASSER server revealed that CbCBM66 is structurally close to BsCBM66 from Bacillus subtilis; however, the COFACTOR and COACH programs indicated that the substrate-binding sites between CbCBM66 and BsCBM66 are different. Furthermore, a substrate-binding assay indicated that the catalytic domains in the two CbPLs had strong affinities for pectate-related substrates, but CbCBM66 showed a weak interaction with a number of lignocellulosic carbohydrates. Finally, scanning electron microscopy (SEM) analysis and a total reducing sugar assay showed that the two enzymes could improve the saccharification of switchgrass. The two CbPLs are impressive sources for the degradation of plant biomass.IMPORTANCE Thermophilic proteins could be implemented in diverse industrial applications. We sought to characterize two pectate lyases, CbPL3 and CbPL9, from a thermophilic bacterium, Caldicellulosiruptor bescii The two enzymes share a high optimum temperature, a low optimum pH, and good thermostability at the evaluated temperature. A family 66 carbohydrate-binding module (CbCBM66) was identified in the two CbPLs, sharing 100% amino acid identity. The deletion of CbCBM66 dramatically decreased the activity of CbPL9 but increased the activity and thermostability of CbPL3, suggesting different roles of CbCBM66 in the two enzymes. Moreover, the degradation products of the two CbPLs were different. These results revealed that these enzymes could represent potential pectate lyases for applications in the paper and textile industries.


Subject(s)
Bacterial Proteins/genetics , Firmicutes/genetics , Pectins/metabolism , Polysaccharide-Lyases/genetics , Bacterial Proteins/metabolism , Biomass , Caldicellulosiruptor , Escherichia coli/enzymology , Escherichia coli/genetics , Firmicutes/enzymology , Microorganisms, Genetically-Modified/enzymology , Microorganisms, Genetically-Modified/genetics , Polysaccharide-Lyases/metabolism
18.
Environ Res ; 186: 109563, 2020 07.
Article in English | MEDLINE | ID: mdl-32353789

ABSTRACT

The purpose of this study was to improve methane generation from corn stalk (CS) through alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide (AHP-LiCl/DMAc) pretreatment. Changes in the structures of treated and untreated CSs were investigated, and biomass components, including cellulose, hemicellulose and lignin, were analysed. Our findings revealed that AHP-LiCl/DMAc pretreatment improved accumulative methane yield by forceful delignification and effectively destroyed the structure of cellulose. The AHP-LiCl/DMAc-treated group had a maximum methane yield of 318.6 ± 17.85 mL/g volatile solid, which was 40.08% and 10.10% higher than the maximum methane yields of the untreated and AHP-treated group, respectively. This result showed enhanced cellulose dissolution by the ionic solvent of LiCl/DMAc and improved enzymatic saccharification in fermentative bacteria without structural modifications. The AHP-LiCl/DMAc treated group had higher glucose level, acetate followed by biomethanation process. Furthermore, the decrease in crystallinity indexes for AHP-LiCl/DMAc treated group was reported. Overall, this investigation proved a promising pretreatment approach for enhancing the degradation of CS into reducing sugars and improving methane generation.


Subject(s)
Lithium Chloride , Zea mays , Acetamides , Hydrogen Peroxide , Hydrolysis
19.
Appl Environ Microbiol ; 86(14)2020 07 02.
Article in English | MEDLINE | ID: mdl-32414802

ABSTRACT

Bioethanol production from syngas using acetogenic bacteria has attracted considerable attention in recent years. However, low ethanol yield is the biggest challenge that prevents the commercialization of syngas fermentation into biofuels using microbial catalysts. The present study demonstrated that ethanol metabolism plays an important role in recycling NADH/NAD+ during autotrophic growth. Deletion of bifunctional aldehyde/alcohol dehydrogenase (adhE) genes leads to significant growth deficiencies in gas fermentation. Using specific fermentation technology in which the gas pressure and pH were constantly controlled at 0.1 MPa and 6.0, respectively, we revealed that ethanol was formed during the exponential phase, closely accompanied by biomass production. Then, ethanol was oxidized to acetate via the aldehyde ferredoxin oxidoreductase pathway in Clostridium ljungdahlii A metabolic experiment using 13C-labeled ethanol and acetate, redox balance analysis, and comparative transcriptomic analysis demonstrated that ethanol production and reuse shared the metabolic pathway but occurred at different growth phases.IMPORTANCE Ethanol production from carbon monoxide (CO) as a carbon and energy source by Clostridium ljungdahlii and "Clostridium autoethanogenum" is currently being commercialized. During gas fermentation, ethanol synthesis is NADH-dependent. However, ethanol oxidation and its regulatory mechanism remain incompletely understood. Energy metabolism analysis demonstrated that reduced ferredoxin is the sole source of NADH formation by the Rnf-ATPase system, which provides ATP for cell growth during CO fermentation. Therefore, ethanol production is tightly linked to biomass production (ATP production). Clarification of the mechanism of ethanol oxidation and biosynthesis can provide an important reference for generating high-ethanol-yield strains of C. ljungdahlii in the future.


Subject(s)
Biofuels/microbiology , Carbon Monoxide/metabolism , Clostridium/metabolism , Ethanol/metabolism , Autotrophic Processes , Clostridium/growth & development , Fermentation
20.
Appl Microbiol Biotechnol ; 104(11): 5159, 2020 06.
Article in English | MEDLINE | ID: mdl-32337629

ABSTRACT

This corrects the article "Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products" in volume 104, with page no 455-473, (https://doi.org/10.1007/s00253-019-10158-w).

SELECTION OF CITATIONS
SEARCH DETAIL
...