Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Open Life Sci ; 17(1): 865-880, 2022.
Article in English | MEDLINE | ID: mdl-36045721

ABSTRACT

Ophiopogonis Radix, also known as Maidong in Chinese, is largely produced in the Sichuan and Zhejiang provinces: "Chuan-maidong (CMD)" and "Zhe-maidong (ZMD)," respectively. This study aimed to distinguish and evaluate the quality of CMD and ZMD. In this study, the tubers of CMD and ZMD were investigated using UPLC-Q/TOF-MS, GC-MS, and LC-MS methods, respectively. Overall, steroidal saponins, homoisoflavonoids, amino acids, and nucleosides were quickly identified. Furthermore, multivariate statistical analysis revealed that CMD and ZMD could be separated. Moreover, CMD showed higher levels of 4-aminobutanoic acid, glycine, l-proline, monoethanolamine, and serine than ZMD. Besides, the levels of chlorogenic acid, traumatic acid, cytidine, cadaverine, pyridoxine 5-phosphate, glutinone, and pelargonidin 3-O-(6-O-malonyl-ß-d-glucoside) were remarkably higher in ZMD than in CMD. Furthermore, these different constituents were mainly associated with galactose metabolism; starch and sucrose metabolism; cysteine and methionine metabolism; valine, leucine, and isoleucine biosynthesis; and glycerophospholipid metabolism. In general, these results showed many differences between the bioactive chemical constituents of Ophiopogon japonicus from different production areas, where ZMD performed better in the quality assessment than CMD, and that UPLC-Q/TOF-MS, GC-MS, and LC-MS are effective methods to discriminate medicinal herbs from different production areas.

2.
J Immunol Res ; 2022: 5758303, 2022.
Article in English | MEDLINE | ID: mdl-35600046

ABSTRACT

Ischemia/reperfusion (I/R) is a primary cause of morbidity and mortality in acute myocardial infarction (AMI). L-Borneol 7-O-[ß-D-apiofuranosyl-(1→6)]-ß-D-glucopyranoside (LBAG), extracted from the Radix Ophiopogonis, is the main bioactive component that may be exerting cardiovascular protection in AMI. The purpose was to examine the effects of LBAG on myocardial I/R injury (MIRI) in rats and H9c2 cells treated with hypoxia/reoxygenation (H/R). MIRI was induced through the combination of ischemia with reperfusion for 30 min and 24 h, respectively. LBAG was administered 7 days before vascular ligation. Myocardial function was detected by an electrocardiograph, histological, TTC, and TUNEL staining analyses. The influences of LBAG on the content concentration of cardiac enzymes in the serum were measured by ELISA. Moreover, H9c2 cells were exposed to LBAG or combined with AKT inhibitor (perifosine) and then exposed to H/R for simulating the cardiac injury process. Afterward, cell viability, LDH, CD-KM release, apoptosis, and autophagy were evaluated by CCK-8 and ELISA assays, flow cytometry, TUNEL, and immunofluorescence staining, respectively. Additionally, the proteins of apoptosis, autophagy, and PI3K/mTOR pathway were determined by western blotting. In I/R rats, LBAG pretreatment significantly ameliorated cardiac function, as illustrated by reducing the infarct size, myocardial autophagy, and apoptosis levels. In H/R-induced H9c2 cells, LBAG pretreatment significantly decreased cell apoptosis, LC3 II/I, and Beclin 1 levels, elevated the Bcl-2 levels, attenuated LDH, and CD-KM production. Moreover, LBAG pretreatment markedly increased the PI3K/mTOR pathway activation, and the protective influences of LBAG were partly abolished with the AKT inhibitor perifosine treatment. These findings demonstrated the protective functions of LBAG on I/R by regulating apoptosis and autophagy in vitro and in vivo by activating the PI3K/mTOR pathway.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Apoptosis , Camphanes , Hypoxia/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
3.
Front Neurosci ; 14: 701, 2020.
Article in English | MEDLINE | ID: mdl-32733195

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a severe mental disorder related to the deficiency of monoamine neurotransmitters, particularly to abnormalities of 5-HT (5-hydroxytryptamine, serotonin) and its receptors. Our previous study suggested that acute treatment with a novel curcumin derivative J147 exhibited antidepressant-like effects by increasing brain derived neurotrophic factor (BDNF) level in the hippocampus of mice. The present study expanded upon our previous findings and investigated the antidepressant-like effects of sub-acute treatment of J147 for 3 days in male ICR mice and its possible relevancy to 5-HT1A and 5-HT1B receptors and downstream cAMP-BDNF signaling. METHODS: J147 at doses of 1, 3, and 9 mg/kg (via gavage) was administered for 3 days, and the anti-immobility time in the forced swimming and tail suspension tests (FST and TST) was recorded. The radioligand binding assay was used to determine the affinity of J147 to 5-HT1A and 5-HT1B receptor. Moreover, 5-HT1A or 5-HT1B agonist or its antagonist was used to determine which 5-HT receptor subtype is involved in the antidepressant-like effects of J147. The downstream signaling molecules such as cAMP, PKA, pCREB, and BDNF were also measured to determine the mechanism of action. RESULTS: The results demonstrated that sub-acute treatment of J147 remarkably decreased the immobility time in both the FST and TST in a dose-dependent manner. J147 displayed high affinity in vitro to 5-HT1A receptor prepared from mice cortical tissue and was less potent at 5-HT1B receptor. These effects of J147 were blocked by pretreatment with a 5-HT1A antagonist NAD-299 and enhanced by a 5-HT1A agonist 8-OH-DPAT. However, 5-HT1B receptor antagonist NAS-181 did not appreciably alter the effects of J147 on depression-like behaviors. Moreover, pretreatment with NAD-299 blocked J147-induced increases in cAMP, PKA, pCREB, and BDNF expression in the hippocampus, while 8-OH-DPAT enhanced the effects of J147 on these proteins' expression. CONCLUSION: The results suggest that J147 induces rapid antidepressant-like effects during a 3-day treatment period without inducing drug tolerance. These effects might be mediated by 5-HT1A-dependent cAMP/PKA/pCREB/BDNF signaling.

4.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2331-2337, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31359660

ABSTRACT

Astragaloside Ⅳ(AS-Ⅳ) has protective effects against ischemia-reperfusion injury(IRI), but its mechanism of action has not yet been determined. This study aims to investigate the protective effects and mechanism of AS-Ⅳ on H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation(H/R). The H/R model of myocardial cells was established by hypoxic culture for 12 hours and then reoxygenation culture for 8 hours. After AS-Ⅳ treatment, cell viability, the reactive oxygen species(ROS) levels, as well as the content or activity of superoxide dismutase(SOD), malondialdehyde(MDA), interleukin 6(IL-6), and tumor necrosis factor alpha(TNF-α), were measured to evaluate the effect of AS-Ⅳ treatment. The effect of AS-Ⅳ on HO-1 protein expression and nuclear Nrf2 and Bach1 protein expression was determined by Western blot. Finally, siRNA was used to knock down HO-1 gene expression to observe its reversal effect on AS-Ⅳ intervention. The results showed that as compared with the H/R model group, the cell viability was significantly increased(P<0.01), ROS level in the cells, MDA, hs-CRP and TNF-α in cell supernatant and nuclear protein Bach1 expression in the cells were significantly decreased(P<0.01), while SOD content, HO-1 protein expression in cells and expression of nuclear protein Nrf2 were significantly increased(P<0.01) in H/R+AS-Ⅳ group. However, pre-transfection of HO-1 siRNA into H9c2 cells by liposome could partly reverse the above effects of AS-Ⅳ after knocking down the expression of HO-1. This study suggests that AS-Ⅳ has significant protective effect on H/R injury of H9c2 cardiomyocytes, and Nrf2/Bach1/HO-1 signaling pathway may be a key signaling pathway for the effect.


Subject(s)
Myocytes, Cardiac/drug effects , Saponins/pharmacology , Signal Transduction , Triterpenes/pharmacology , Apoptosis , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Hypoxia , Cells, Cultured , Heme Oxygenase-1/metabolism , Humans , NF-E2-Related Factor 2/metabolism
5.
J Psychopharmacol ; 33(5): 568-576, 2019 05.
Article in English | MEDLINE | ID: mdl-30835157

ABSTRACT

BACKGROUND: Phosphodiesterase-2 (PDE2) is a cyclic nucleotide phosphodiesterase and is highly expressed in the amygdala, which suggests its important role in anxiety-like behavior. AIMS: The present study examined whether reduced PDE2A expression in the central nucleus of the amygdala (CeA) produces anxiolytic-like effects in mice. METHODS: PDE2A knockdown in amygdaloid (AR5) cells or the CeA was established using a lentiviral vector-based siRNA system. The anxiety-like behaviors were detected by the elevated plus maze (EPM) and hole-board tests in mice. The related proteins involved in cAMP/cGMP-dependent signaling, such as specific marker VASPser239, CREBser133 and BDNF were detected by immunoblot analysis. RESULTS: PDE2A inhibition in AR-5 cells resulted in increases in cAMP/cGMP-related pVASPser239 and pCREBser133. Behavioral tests showed that PDE2A knockdown in the CeA induced anxiolytic-like effects as evidenced by the increases in percentages of open-arm entries and time spent in the open arms in the EPM test, and the increases in head dips and time spent in head dipping in the hole-board test. However, these anxiolytic-like effects were antagonized by pre-treatment of soluble guanylyl cyclase inhibitor ODQ or adenylate cyclase inhibitor SQ. Furthermore, PDE2A knockdown significantly increased pVASPSer239, pCREBSer133 and decreased BDNF expression in the amygdala. Pre-intra-CeA of ODQ or SQ reversed or partially prevented the effects of PDE2A knockdown on these proteins. CONCLUSIONS: The results suggest that PDE2A plays a crucial role in the regulation of anxiety by the cGMP/cAMP-dependent pVASP-pCREB-BDNF signaling pathway.


Subject(s)
Anxiety/metabolism , Behavior, Animal/physiology , Central Amygdaloid Nucleus/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Signal Transduction/physiology , Animals , Anxiety/enzymology , Cell Line , Central Amygdaloid Nucleus/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 2/deficiency , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
6.
Neuropsychopharmacology ; 43(11): 2299-2309, 2018 10.
Article in English | MEDLINE | ID: mdl-30131563

ABSTRACT

Inhibitors of phosphodiesterase-4 (PDE4) have beneficial effects on memory in preclinical and clinical studies. Development of these drugs has stalled due to dose-limiting side effects of nausea and emesis. While use of subtype-selective inhibitors (i.e., for PDE4A, B, or D) could overcome this issue, conservation of the catalytic region, to which classical inhibitors bind, limits this approach. The present study examined the effects of BPN14770, an allosteric inhibitor of PDE4D, which binds to a primate-specific, N-terminal region. In mice engineered to express PDE4D with this primate-specific sequence, BPN14770 was 100-fold more potent for improving memory than in wild-type mice; meanwhile, it exhibited low potency in a mouse surrogate model for emesis. BPN14770 also antagonized the amnesic effects of scopolamine, increased cAMP signaling in brain, and increased BDNF and markers of neuronal plasticity associated with memory. These data establish a relationship between PDE4D target engagement and effects on memory for BPN14770 and suggest clinical potential for PDE4D-selective inhibitors.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Memory/drug effects , Phosphodiesterase 4 Inhibitors/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Maze Learning/drug effects , Maze Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphodiesterase 4 Inhibitors/chemistry , Protein Binding/physiology
7.
Front Pharmacol ; 9: 862, 2018.
Article in English | MEDLINE | ID: mdl-30131699

ABSTRACT

Receptor tyrosine kinase EphB2 mediates development of the neurogenic niche of excitatory neurons, suggesting the possibility that its inactivation plays a role in neuropsychiatric disorders including depression and memory impairment. While N-methyl-D-aspartate (NMDA) receptor is involved in regulating memory formation and neurogenesis in adult animal, it remains unclear how NMDA receptor subtypes mediate depression and cognitive deficits caused by EphB2 loss. The present study shows that EphB2 inactivation results in depression-like behaviors, memory impairment and defects of adult hippocampal neurogenesis. Compared to wild-type littermates, EphB2 KO mice exhibited depression-like behavior and deficits in spatial memory and cognition in forced swimming, tail suspension, Morris water maze, object recognition test and object location test. These behavioral abnormalities were accompanied by substantial decreases in the number of BrdU+ progenitor neurons, phosphorylation of cAMP-response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF), and increased NMDA receptor 2B (NR2B) expression. These molecular, cellular and behavioral alterations induced by EphB2 inactivation were reversed by NR2B antagonist Ro25-6981, suggesting that EphB2 functions to prevent the progression of depression-like behavior and memory impairment by downregulating NR2B. Our findings highlight that NR2B is responsible for EphB2-dependent behavioral and morphological changes. EphB2 may thus be as an important candidate target for treating psychiatric and cognitive disorders.

8.
Biomed Pharmacother ; 99: 113-120, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29329033

ABSTRACT

In this study, we investigated the potential effect of onjisaponin B (OB) on aging rats induced by D-gal (D-galactose). Sub-acute aging model was established in rats by the subcutaneous injection of D-gal (120 mg/kg) for 42 days, accompanied with OB (10, 20 mg/kg, p.o.) or normal saline intervention for 28 days since the 14th day after the beginning of D-gal stimulation. Morris water maze test and step-down passive avoidance test were conducted to evaluate the cognitive function of the rats. The superoxidase dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase (GSH-px) contents in hippocampus were measured by according kits, respectively. And the hippocampus levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) were assayed by enzyme-linked immunosorbent assay (ELISA). Furthermore, the expressions of SOD1, MDA5, GSH, GSH-px, NF-кB pathway were present by western blot. It revealed that administration of OB was able to significantly attenuate the D-gal-induced changes in the hippocampus, ranging from cognitive capacity, oxidative stress to inflammation response. In a nutshell, our data provided evidence that OB could contribute to the restoration of cognitive ability by improving the antioxidant and anti-inflammatory capacity in D-gal induced aging rats.


Subject(s)
Aging/pathology , Cognition Disorders/drug therapy , Cognition Disorders/prevention & control , Saponins/therapeutic use , Triterpenes/therapeutic use , Animals , Avoidance Learning/drug effects , Disease Models, Animal , Galactose , Glutathione Peroxidase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , NF-kappa B/metabolism , Rats, Sprague-Dawley , Saponins/pharmacology , Superoxide Dismutase/metabolism , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism
9.
Neuropharmacology ; 133: 181-188, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29373817

ABSTRACT

trans-Resveratrol, a natural polyphenol enriched in grape seed and skin, has been extensively investigated for its antioxidant, anti-inflammatory and anti-psychiatric properties. The present study examined the effects of trans-resveratrol on ameliorating anxiety-like behaviors and fear memory deficits induced by time-dependent sensitization (TDS) procedure, which is a classical animal model for mimicking posttraumatic stress disorder (PTSD). The results suggested that trans-resveratrol at doses of 10, 20 and 40 mg/kg (via gavage, i.g.) reversed TDS-induced decreases in the percentage of time spent in the center of arena, the open arm entries and time spent in the open arms in the open field and elevated plus maze tests. It also decreased the percentage of freezing time in the contextual fear paradigm that was increased in TDS treated rats. Further study suggested that TDS-induced abnormality in the limbic hypothalamus-pituitary-adrenal gland (L-HPA) axis was reversed by trans-resveratrol, i.e. it reversed increased adrenal gland index and corticotropin-releasing factor (CRF) levels, and rescued the differential expression of glucocorticoid receptor (GR) in the hypothalamus, hippocampus and amygdala. Neurobiological studies suggested that trans-resveratrol increased phosphorylation of cAMP response element binding protein (pCREB) and brain derived neurotrophic factor (BDNF) levels, which were decreased in rats subjected to TDS. These results provide compelling evidence that trans-resveratrol protects neurons against PTSD-like stress insults by regulation of L-HPA axis function and activation of downstream neuroprotective molecules, such as pCREB and BDNF expression.


Subject(s)
Antioxidants/therapeutic use , Anxiety/drug therapy , Fear/drug effects , Memory Disorders/drug therapy , Stilbenes/therapeutic use , Adrenal Glands/drug effects , Adrenal Glands/pathology , Analysis of Variance , Animals , Anxiety/etiology , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Corticotropin-Releasing Hormone/metabolism , Disease Models, Animal , Exploratory Behavior/drug effects , Male , Maze Learning/drug effects , Memory Disorders/etiology , Rats , Rats, Sprague-Dawley , Resveratrol , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/pathology
10.
Int J Clin Exp Med ; 8(9): 15940-8, 2015.
Article in English | MEDLINE | ID: mdl-26629097

ABSTRACT

In order to investigate the effects of Zhu-tan Tong-luo decoction on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6. The rats were randomly divided into acute Zhu-Tan Tong-Luo decoction group (Low, High), chronic Zhu-Tan Tong-Luo decoction group (Low, High) and control group. The acute group rats were given 0.6, 1.2 g/kg (Low, High) Zhu-tan Tong-luo decoction by intragastric administration for 1 day, and the chronic group for 14 days. Six probe drugs bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. There statistical pharmacokinetics differences for omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol in rats were observed by comparing acute Zhu-tan Tong-luo decoction group with control group; and statistical pharmacokinetics differences for bupropion, omeprazole, phenacetin, testosterone, tolbutamide, and metroprolol were observed by comparing chronic Zhu-Tan Tong-Luo decoction group with control group. After intragastric administration of Zhu-Tan Tong-Luo decoction may slightly induce the activities of CYP2B6, CYP2C19, CYP1A2, CYP3A4, CYP2C9, CYP2D6 of rats. Induction of drug metabolizing enzyme by Zhu-Tan Tong-Luo decoction would reduce the efficacy of other drug. Additional, there no statistical difference for biochemical results after 1 or 14 intragastric administration of Zhu-Tan Tong-Luo decoction.

11.
Metab Brain Dis ; 30(6): 1505-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26220010

ABSTRACT

The lifetime prevalence rate for major depressive disorder (MDD) is approximately 17 % for most developed countries around the world. Dietary polyphenols are currently used as an adjuvant therapy to accelerate the therapeutic efficacy on depression. Ferulic acid (FA) or 4-hydroxy-3-methoxy-cinnamic acid (Fig. 1a) is a main polyphenolic component of Chinese herb Radix Angelicae Sinensis, which is found to have antidepressant-like effects through regulating serotonergic and noradrenergic function. The present study examined the synergistic effect of low doses of FA combined with subthreshold dose of piperine, a bioavailability enhancer, on depression-like behaviors in mice, and investigated the possible mechanism. The administration of FA, even in the highest dose tested, reduced immobility time by 60 % in the tail suspension and forced swimming tests (TST and FST) in mice when compared to control. The maximal antidepressant-like effect of FA was obtained with 200 mg/kg. In addition, piperine only produced a weak antidepressant-like effect in the TST and FST. However, the evidence from the interaction analysis suggested a synergistic effect when low doses of FA were combined with a subthreshold dose of piperine. Further neurochemical evidence such as monoamine levels in the frontal cortex, hippocampus, and hypothalamus and measurements of monoamine oxidase activity also supported a synergistic effect of FA and piperine in the enhancement of monoaminergic function. This finding supports the concept that the combination strategy might be an alternative therapy in the treatment of psychiatric disorders with high efficacy and low side effects.


Subject(s)
Alkaloids/pharmacology , Antidepressive Agents/pharmacology , Benzodioxoles/pharmacology , Biogenic Monoamines/metabolism , Coumaric Acids/pharmacology , Neurotransmitter Agents/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Biological Availability , Brain Chemistry/drug effects , Depression/drug therapy , Depression/metabolism , Drug Synergism , Hindlimb Suspension/psychology , Male , Mice , Mice, Inbred ICR , Monoamine Oxidase/metabolism , Motor Activity/drug effects , Swimming/psychology
12.
Metab Brain Dis ; 30(1): 129-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25483788

ABSTRACT

Ferulic acid is a polyphenol that has antioxidant, anti-inflammatory and anticancer properties. The present study analyzed the antidepressant-like potential of ferulic acid using two well-validated mouse models of despair test, tail suspension and forced swim tests. The results suggested that ferulic acid treatment at doses of 10, 20, 40 and 80 mg/kg (p.o.) significantly reduced the immobility time in both of these two tests. These doses that affected the depressive-like behaviors did now show any effect on locomotion counts. The further neurochemical assays suggested that ferulic acid increased monoamine neurotransmitter levels in the brain regions that are relative to mood disorders: the hippocampus and frontal cortex. The increased tend to serotonin and norepinephrine was also found in the hypothalamus after higher dose of ferulic acid treatment. The subsequent study suggested that monoamine oxidase A (MAO-A) activity was inhibited in the frontal cortex and hippocampus when treatment with 40 and 80 mg/kg ferulic acid; while MAO-B activity did not change significantly. The current study provides the first lines of evidence that serotonin and norepinephrine, but not dopamine levels were elevated in mouse hippocampus and frontal cortex after ferulic acid treatment. These changes may be attributable to the inhibition of MAO-A activities in the same brain regions.


Subject(s)
Antidepressive Agents/therapeutic use , Coumaric Acids/therapeutic use , Monoamine Oxidase Inhibitors/therapeutic use , Norepinephrine/physiology , Serotonin/physiology , Animals , Antidepressive Agents/pharmacology , Corpus Striatum/chemistry , Corpus Striatum/drug effects , Coumaric Acids/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Frontal Lobe/chemistry , Frontal Lobe/drug effects , Hippocampus/chemistry , Hippocampus/drug effects , Hypothalamus/chemistry , Hypothalamus/drug effects , Imipramine/pharmacology , Imipramine/therapeutic use , Immobilization , Male , Mice , Mice, Inbred ICR , Moclobemide/pharmacology , Moclobemide/therapeutic use , Monoamine Oxidase/analysis , Monoamine Oxidase Inhibitors/pharmacology , Motor Activity/drug effects , Norepinephrine/analysis , Physical Exertion/drug effects , Serotonin/analysis , Stress, Physiological , Stress, Psychological , Swimming
13.
Metab Brain Dis ; 28(4): 585-95, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23943324

ABSTRACT

Major depression is characterized by dysfunction of neuroendocrine and immune networks. Trans-resveratrol, a phenolic compound presented in polygonum cuspidatum, was demonstrated previously to exert antidepressant-like effects through regulating monoaminergic system, oxidative/antioxidant defense and inflammatory response. The present study investigated the synergistic antidepressant-like effect of trans-resveratrol and piperine, a bioavailability enhancer, in mice and explored the possible mechanism. Trans-resveratrol was shown to reduce the immobility time both in the tail suspension and forced swimming tests (TST and FST). But the maximal inhibition was nearly 60% even if the doses were increased by 160 mg/kg; while piperine produced weak antidepressant-like effects in these two models. The interaction between trans-resveratrol and piperine was shown a clear-cut synergistic effect as evidenced by an isobolographic analysis. The further study suggested that the anti-immobility response from the subthreshold dose of piperine (2.5 mg/kg) and low doses of trans-resveratrol (10 and 20 mg/kg) was abolished by pretreatment with para-chlorophenylalanine (PCPA, 300 mg/kg, i.p.) in TST and FST, indicating the involvement of serotonergic system. Moreover, treatment with the subthreshold dose of piperine and low doses of trans-resveratrol attenuated reserpine-induced hypothermia and ptosis arguing for the relevance of noradrenaline. Additional evidence from neurochemical (monoamines in the frontal cortex, hippocampus, and hypothalamus) and biochemical (monoamine oxidase, MAO activity) assays corroborated the synergistically elevated monoaminergic system after co-treatment with trans-resveratrol and piperine. The present results indicate the effect of trans-resveratrol combined with piperine on depressive-like behaviors may be partly due to the potentiated activation of monoaminergic system in the brain. Further studies are necessary to elucidate the involvement of the oxidative/nitrosative stress, inflammatory and neuroprotective pathway in the antidepressant-like effect of this combination. The synergistic effect obtained from the combination may provide innovative clues for designing novel antidepressants with high efficacy and low side effects.


Subject(s)
Alkaloids/therapeutic use , Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Benzodioxoles/therapeutic use , Depression/drug therapy , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Stilbenes/therapeutic use , Alkaloids/pharmacology , Animals , Antidepressive Agents/pharmacology , Benzodioxoles/pharmacology , Brain/drug effects , Brain/metabolism , Depression/metabolism , Drug Synergism , Hindlimb Suspension , Mice , Monoamine Oxidase/metabolism , Motor Activity/drug effects , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Resveratrol , Serotonin/metabolism , Stilbenes/pharmacology , Swimming
14.
Eur Neuropsychopharmacol ; 20(6): 405-13, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20353885

ABSTRACT

The antidepressant-like effect of trans-resveratrol, a phenolic compound present in polygonum cuspidatum, was evaluated through behavioral and neurochemical methods. trans-Resveratrol (20, 40 and 80 mg/kg, via gavage) significantly decreased the immobility time in mouse models of despair tests, but did not influence locomotor activity. Two behavioral models and neurochemical assays suggested that trans-resveratrol produced a significant increase in serotonin and noradrenaline levels at 40 or 80 mg/kg in brain regions. In addition, trans-resveratrol dose dependently inhibited MAO-A activity. These findings indicate that the antidepressant-like effect of trans-resveratrol might be related to serotonergic and noradrenergic activation.


Subject(s)
Antidepressive Agents , Antioxidants/pharmacology , Norepinephrine/physiology , Serotonin/physiology , Stilbenes/pharmacology , Animals , Apomorphine , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Depression/psychology , Dose-Response Relationship, Drug , Fenclonine/pharmacology , Hindlimb Suspension , Hypothermia/chemically induced , Hypothermia/pathology , Male , Mice , Mice, Inbred ICR , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors , Motor Activity/drug effects , Norepinephrine/metabolism , Resveratrol , Serotonin/metabolism , Stereotyped Behavior/drug effects , Swimming/psychology
15.
Pharmacol Biochem Behav ; 94(3): 447-53, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19857512

ABSTRACT

Proanthocyanidin is a phenolic product present in plants which has antioxidant, antinociceptive and neuroprotective properties, without inducing significant toxicological effects. The present study tested the hypothesis that low molecular proanthocyanidin from grapes that has optimized bioavailability, would exert antidepressant-like activities in behavioral despair tests. The results suggested that oral administration proanthocyanidin at doses of 25 and 50mg/kg for 7days significantly reduced the duration of immobility in both the tail suspension and forced swimming tests. The doses that affected the immobile response did not affect locomotor activity. In addition, the neurochemical and neuropharmacological assays showed that proanthocyanidin produced a marked increase of 5-HT levels at 25 and 50mg/kg in three brain regions, the frontal cortex, hippocampus and hypothalamus. Noradrenaline and dopamine levels were also increased when higher dose of proanthocyanidin (50mg/kg) administration both in the frontal cortex and hippocampus. These effects were similar to those observed for the classical antidepressant imipramine (10mg/kg, i.p.). Moreover, Our study suggested that proanthocyanidin (12.5, 25 and 50mg/kg) dose dependently inhibited monoamine oxidase-A (MAO-A) activity, while MAO-B inhibitory activity was also found at higher doses (25 and 50mg/kg) after 7days administration. MAO-A selective inhibitor, moclobemide (20mg/kg, i.g.) produced MAO-A inhibition of 70.5% in the mouse brain. These findings suggest that the antidepressant-like effects of proanthocyanidin may involve the central monoaminergic neurotransmitter systems.


Subject(s)
Antidepressive Agents/pharmacology , Biogenic Monoamines/physiology , Proanthocyanidins/pharmacology , Animals , Brain/drug effects , Brain/enzymology , Brain/metabolism , Dose-Response Relationship, Drug , Locomotion/drug effects , Male , Mice , Mice, Inbred ICR , Molecular Weight , Monoamine Oxidase/metabolism
16.
Neuropharmacology ; 57(4): 463-71, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19540859

ABSTRACT

Chronic stress occurs in everyday life and induces impaired spatial cognition, neuroendocrine and plasticity abnormalities. A potential therapeutic for these stress related disturbances is curcumin, derived from the curry spice turmeric. Previously we demonstrated that curcumin reversed the chronic stress-induced behavioral deficits in escape from an aversive stimulus, however the mechanism behind its beneficial effects on stress-induced learning defects and associated pathologies are unknown. This study investigated the effects of curcumin on restraint stress-induced spatial learning and memory dysfunction in a water maze task and on measures related neuroendocrine and plasticity changes. The results showed that memory deficits were reversed with curcumin in a dose dependent manner, as were stress-induced increases in serum corticosterone levels. These effects were similar to positive antidepressant imipramine. Additionally, curcumin prevented adverse changes in the dendritic morphology of CA3 pyramidal neurons in the hippocampus, as assessed by the changes in branch points and dendritic length. In primary hippocampal neurons it was shown that curcumin or imipramine protected hippocampal neurons against corticosterone-induced toxicity. Furthermore, the portion of calcium/calmodulin kinase II (CaMKII) that is activated (phosphorylated CaMKII, pCaMKII), and the glutamate receptor sub-type (NMDA(2B)) expressions were increased in the presence of corticosterone. These effects were also blocked by curcumin or imipramine treatment. Thus, curcumin may be an effective therapeutic for learning and memory disturbances as was seen within these stress models, and its neuroprotective effect was mediated in part by normalizing the corticosterone response, resulting in down-regulating of the pCaMKII and glutamate receptor levels.


Subject(s)
Cognition Disorders/drug therapy , Curcumin/pharmacology , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Stress, Psychological/drug therapy , Animals , Antidepressive Agents, Tricyclic/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Corticosterone/blood , Curcumin/administration & dosage , Hippocampus/drug effects , Hippocampus/physiopathology , Imipramine/pharmacology , Learning Disabilities/drug therapy , Learning Disabilities/etiology , Learning Disabilities/physiopathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity/physiology , Neuroprotective Agents/administration & dosage , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Space Perception/drug effects , Space Perception/physiology , Stress, Psychological/complications , Stress, Psychological/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...