Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(2): 1141-1149, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471951

ABSTRACT

This research aimed to clarify the mitigative effect of exogenously applied rare earth element cerium (Ce) on the growth, zinc (Zn) accumulation, and physiological characteristics of wheat (Triticum aestivum L.) seedlings under Zn stress. The wheat variety studied was Bainong307 (BN307), and Zn stress was achieved by growing seedlings in a hydroponic culture experiment with 500 µmol·L-1 Zn2 + added to the culture solution. It was found that Zn stress at 500 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Zn stress. The Zn stress also increased MDA accumulation and the degree of cell membrane lipid peroxidation and reduced soluble protein contents and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). On the contrary, exogenous Ce decreased the adsorption and transport of Zn by the root system and alleviated the damage of Zn stress to wheat seedlings. Specifically, the increase in chlorophyll content (chlorophyll a, chlorophyll b, and total chlorophyll) and photosynthetic parameters, the enhancement of antioxidant enzymes activities and soluble protein levels, and the reduction in MDA content and the damage of lipid peroxidation to the cell membrane were all driven by exogenous Ce, which ultimately led to the increase in dry matter biomass of the root system and shoot. In summary, these results provide basic data for the application of exogenous Ce to alleviate Zn toxicity to plants.


Subject(s)
Cerium , Zinc , Zinc/metabolism , Antioxidants/metabolism , Seedlings , Triticum , Cerium/metabolism , Cerium/pharmacology , Chlorophyll A , Superoxide Dismutase/metabolism , Chlorophyll , Oxidative Stress
2.
Huan Jing Ke Xue ; 45(2): 1128-1140, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471950

ABSTRACT

To explore the effects of different concentrations of zinc (Zn) on the growth and root architecture classification of maize seedlings under cadmium (Cd) stress, a hydroponic experiment was conducted to study the effects of different concentrations of Zn (0, 10, 25, 50, 100, 200, and 400 µmol·L-1) on the growth, root architecture and classification characteristics, Cd content, root Cd uptake capacity, and photosynthetic system of maize seedlings under Cd stress (50 µmol·L-1) by using Zhengdan 958 as the experimental material. Principal component analysis and the membership function method were used for comprehensive evaluation. The results showed that the 50 µmol·L-1 Cd stress had a significant toxic effect on maize seedlings, which significantly reduced chlorophyll content and photosynthetic parameters. The main root length, plant height, biomass, root forks, and root tips, including the root length and root surface area of the grade Ⅰ-Ⅲ diameter range and the root volume of the grade Ⅰ-Ⅱ diameter range, decreased significantly, which hindered the normal growth and development of maize seedlings. Compared with that under no Zn application, 100 µmol·L-1 and 200 µmol·L-1 Zn application reduced the uptake of Cd by maize seedlings, significantly reduced the Cd content in shoots and roots and the Cd uptake efficiency. The toxic effect on maize seedlings was alleviated, and the fresh weight, dry weight, tolerance index, and root forks of shoots and roots were significantly increased. The photosynthesis of maize seedlings was significantly enhanced, and the photosynthetic rate and the total chlorophyll content was significantly increased. The RL, SA, and RV in the Ⅰ-Ⅱ diameter range reached the maximum at 100 µmol·L-1 Zn, and the RL, SA, and RV in the Ⅲ diameter range reached the maximum at 200 µmol·L-1 Zn, which were significantly higher than those without Zn treatment. The comprehensive evaluation of the growth tolerance of maize seedlings showed that 100 µmol·L-1 and 200 µmol·L-1 Zn had better effects on alleviating Cd toxicity. Comprehensive analysis showed that the application of appropriate concentration of Zn could reduce the Cd content in maize seedlings, the Cd uptake capacity, and Cd uptake efficiency of roots; increase the biomass accumulation of maize seedlings; reduce the effect of Cd toxicity on root architecture; reduce the effect on the light and system; and improve the tolerance of maize seedlings to Cd.


Subject(s)
Seedlings , Soil Pollutants , Zinc , Cadmium , Zea mays , Plant Roots , Chlorophyll
3.
Environ Sci Pollut Res Int ; 29(45): 68191-68201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35538337

ABSTRACT

Cadmium (Cd) is a toxic heavy metal to plants and human health. Ascorbate (ASA)-glutathione (GSH) synthesis pathway plays key roles in Cd detoxification, while its molecular regulatory mechanism remains largely unknown, especially in wheat. Here, we found a WRKY transcription factor-TaWRKY74, and its function in wheat Cd stress is not clear in previous studies. The expression levels of TaWRKY74 were significantly induced by Cd stress. Compared to control, the activities of GST, GR, or APX were significantly increased by 1.55-, 1.43-, or 1.75-fold and 1.63-, 2.65-, or 2.30-fold in shoots and roots of transiently TaWRKY74-silenced wheat plants under Cd stress. Similarly, the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), GSH, or Cd were also significantly increased by 2.39- or 1.25-fold, 1.54- or 1.20-fold, and 1.34- or 5.94-fold in shoots or roots in transiently TaWRKY74-silenced wheat plants, while ASA content was decreased by 47.4 or 43.3% in shoots, 10.7 or 6.5% in roots in these silenced wheat plants, respectively. Moreover, the expression levels of GSH, GPX, GR, DHAR, MDHAR, and APX genes, which are involved in ASA-GSH synthesis, were separately induced by 2.42-, 2.16-, 3.28-, 2.08-, 1.92-, and 2.23-fold in shoots, or by 10.69-, 3.33-, 3.26-, 1.81-, 16.53-, and 3.57-fold in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants, respectively. However, the expression levels of TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1, and TaIRT1 metal transporters genes were decreased by 21.2-76.3% (56.6%, 59.2%, 76.3%, 53.6%, 35.8%, and 21.2%) in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants. Taken together, our results suggested that TaWRKY74 alleviated Cd toxicity in wheat by affecting the expression of ASA-GSH synthesis genes and suppressing the expression of Cd transporter genes, and further affecting Cd uptake and translocation in wheat plants.


Subject(s)
Cadmium , Triticum , Antioxidants/metabolism , Ascorbic Acid/metabolism , Cadmium/metabolism , Glutathione/metabolism , Humans , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism
4.
Ecotoxicol Environ Saf ; 237: 113533, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35453025

ABSTRACT

Cadmium (Cd) is a dispensable element that can be absorbed by crops, posing a threat to human health through the food chains. Melatonin (MT), as a plant growth regulator, has been used to alleviate Cd toxicity in many plant species; however, the underlying molecular mechanisms responsible for Cd toxicity in wheat are still poorly understood. In this study, the suitable exogenous MT concentration (50 µM) was screened to mitigate Cd toxicity of wheat plants by increasing the plant height, root length, fresh or dry weight and chlorophyll content, or decreasing the malondialdehyde (MDA) content. In addition, MT application significantly increased ascorbic acid (ASA) and glutathione (GSH) content by reducing ROS production, especially in roots, further decreasing Cd content in fraction of organelles. Moreover, the expression levels of ASA-GSH synthesis genes, APX, GR, and GST were significantly increased by 171.5%, 465.2%, and 256.8% in roots, respectively, whereas GSH, DHAR, or MDHAR were significantly decreased by 48.5%, 54.3%, or 60.0% in roots under MT + Cd stress. However, the expression levels of Cd-induced metal transporter genes TaNramp1, TaNramp5, TaHMA2, TaHMA3, and TaLCT1 were significantly decreased by 53.7%, 50.1%, 86.5%, 87.2%, and 94.5% in roots under MT + Cd stress compared with alone Cd treatment, respectively. In conclusion, our results suggesting that MT alleviate Cd toxicity in wheat by enhancing ASA-GSH metabolism, suppressing Cd transporter gene expression, and regulating Cd uptake and translocation in wheat plants.


Subject(s)
Ascorbic Acid , Melatonin , Antioxidants/metabolism , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Cadmium/metabolism , Cadmium/toxicity , Glutathione/metabolism , Humans , Melatonin/metabolism , Melatonin/pharmacology , Oxidative Stress , Plant Roots/metabolism , Seedlings/metabolism , Triticum/metabolism
5.
Ecotoxicol Environ Saf ; 221: 112469, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34198190

ABSTRACT

Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.


Subject(s)
Copper/toxicity , Glutathione Transferase/metabolism , Glutathione/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Triticum/drug effects , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism , Two-Hybrid System Techniques , Yeasts/genetics
6.
Bull Environ Contam Toxicol ; 107(2): 320-326, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34110442

ABSTRACT

Cadmium (Cd), a toxic heavy metal, is harmful to plants and human health. Glutathione (GSH) could alleviate Cd toxicity of plant species, whereas its mechanism responsible for wheat remains poorly understood. Here, we found that exogenous GSH application significantly increased the fresh and dry weight, root elongation, chlorophyll contents, while decreased the contents of malondialdehyde (MDA) and GSH, and translocation factor of Cd compared with Cd treatment. Moreover, GSH application significantly increased activities of antioxidant enzymes and expression of related genes, which involved in GSH synthesis, especially in roots. In addition, we found that GSH application suppressed Cd-induced expression of metal transporter genes TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1 and TaIRT2 in roots. Taken together, our results suggested that GSH could alleviate Cd toxicity in wheat by increasing GSH synthesis gene expression or suppressing Cd transporter genes expression, and further affecting Cd uptake and translocation in wheat plants.


Subject(s)
Cadmium , Triticum , Antioxidants , Cadmium/toxicity , Chlorophyll , Glutathione , Humans , Plant Roots
7.
J Pineal Res ; 70(4): e12727, 2021 May.
Article in English | MEDLINE | ID: mdl-33666955

ABSTRACT

Melatonin (MT) is involved in various physiological processes and stress responses in animals and plants. However, little is known about the molecular mechanisms by which MT regulates potassium deficiency (DK) tolerance in crops. In this study, an appropriate concentration (50 µmol/L) was found to enhance the tolerance of wheat plants against DK. RNA-seq analysis showed that a total of 6253 and 5873 differentially expressed genes (DEGs) were separately identified in root and leaf tissues of the DK + MT-treated wheat plants. They functionally involved biological processes of secondary metabolite, signal transduction, and transport or catabolism. Of these, an upregulated high-affinity K transporter 1 (TaHAK1) gene was next characterized. TaHAK1 overexpression markedly enhanced the K absorption, while its transient silencing exhibited the opposite effect, suggesting its important role in MT-mediated DK tolerance. Moreover, yeast one-hybrid (Y1H) was used to screen the upstream regulators of TaHAK1 gene and the transcription factor TaNAC71 was identified. The binding between TaNAC71 and TaHAK1 promoter was evidenced by using Y1H, LUC, and EMSA assays. Transient overexpression of TaNAC71 in wheat protoplasts activated the TaHAK1 expression, whereas its transient silencing inhibited the TaHAK1 expression and aggravated the sensitivity to DK. Exogenous MT application greatly upregulated the expression of TaHAK1 in both transient overexpression and silencing systems. Our findings revealed some molecular mechanisms underlying MT-mediated DK tolerance and helped broaden its practical application in agriculture.


Subject(s)
Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant/physiology , Melatonin/metabolism , Plant Proteins/metabolism , Potassium Deficiency/metabolism , Triticum/metabolism , Adaptation, Physiological/physiology , Crops, Agricultural/metabolism , Plant Growth Regulators/metabolism
8.
BMC Genomics ; 21(1): 577, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32831009

ABSTRACT

BACKGROUND: Drought is one of the most adverse environmental factors limiting crop productions and it is important to identify key genetic determinants for food safety. Calcium-dependent protein kinases (CPKs) are known to be involved in plant growth, development, and environmental stresses. However, biological functions and regulatory mechanisms of many plant CPKs have not been explored. In our previous study, abundance of the wheat CPK34 (TaCPK34) protein was remarkably upregulated in wheat plants suffering from drought stress, inferring that it could be involved in this stress. Therefore, here we further detected its function and mechanism in response to drought stress. RESULTS: Transcripts of the TaCPK34 gene were significantly induced after PEG-stimulated water deficiency (20% PEG6000) or 100 µM abscisic acid (ABA) treatments. The TaCPK34 gene was transiently silenced in wheat genome by using barley stripe mosaic virus-induced silencing (BSMV-VIGS) method. After 14 days of drought stress, the transiently TaCPK34-silenced wheat seedlings showed more sensitivity compared with control, and the plant biomasses and relative water contents significantly decreased, whereas soluble sugar and MDA contents increased. The iTRAQ-based quantitative proteomics was employed to measure the protein expression profiles in leaves of the transiently TaCPK34-silenced wheat plants after drought stress. There were 6103 proteins identified, of these, 51 proteins exhibited significantly altered abundance, they were involved in diverse function. And sequence analysis on the promoters of genes, which encoded the above identified proteins, indicated that some promoters harbored some ABA-responsive elements. We determined the interactions between TaCPK34 and three identified proteins by using bimolecular fluorescent complementation (BiFC) method and our data indicated that TaCPK34directly interacted with the glutathione S-transferase 1 and prx113, respectively. CONCLUSIONS: Our study suggested that the TaCPK34 gene played positive roles in wheat response to drought stress through directly or indirectly regulating the expression of ABA-dependent manner genes, which were encoding identified proteins from iTRAQ-based quantitative proteomics. And it could be used as one potential gene to develop crop cultivars with improved drought tolerance.


Subject(s)
Droughts , Triticum , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Triticum/genetics , Triticum/metabolism
9.
Int J Mol Sci ; 19(5)2018 May 15.
Article in English | MEDLINE | ID: mdl-29762476

ABSTRACT

The APETALA2/ethylene response factor (AP2/ERF) superfamily is involved in the responses of plants to biotic and abiotic stresses; however, the functions and mechanisms of some members of this family in plants are unclear. In our previous study, expression of TaERFL1a, a member of the AP2/ERF family, was remarkably induced in wheat seedlings suffering freezing stress. In this study, we show that its expression was rapidly upregulated in response to salt, cold, and water deficiency, suggesting roles in the responses to abiotic stresses. Further, transient barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) resulted in significantly reduced tolerance to 20% PEG6000-stimulated water deficiency. Subcellular localization and transcriptional activation assays separately showed that TaERFL1a was targeted to the nucleus and possessed transcriptional activation activity. Yeast two-hybrid library screening identified six interacting proteins, and of these, the interactions between TaERFL1a and TaSGT1, and TaERFL1a and TaDAD2 proteins were further confirmed by yeast co-transformation and bimolecular fluorescent complementation (BiFC). Collectively, our results suggest that TaERFL1a is a stress-responsive transcription factor, which could be functionally related to proteins involved in the abiotic stress responses of plants.


Subject(s)
Droughts , Plant Proteins/genetics , Stress, Physiological , Transcription Factors/genetics , Triticum/genetics , Plant Proteins/metabolism , Protein Binding , Transcription Factors/metabolism , Triticum/metabolism
10.
New Phytol ; 219(1): 149-162, 2018 07.
Article in English | MEDLINE | ID: mdl-29658118

ABSTRACT

Whilst WRKY transcription factors are known to be involved in diverse plant responses to biotic stresses, their involvement in abiotic stress tolerance is poorly understood. OsFRDL4, encoding a citrate transporter, has been reported to be regulated by ALUMINUM (Al) RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) in rice, but whether it is also regulated by other transcription factors is unknown. We define the role of OsWRKY22 in response to Al stress in rice by using mutation and transgenic complementation assays, and characterize the regulation of OsFRDL4 by OsWRKY22 via yeas one-hybrid, electrophoretic mobility shift assay and ChIP-quantitative PCR. We demonstrate that loss of OsWRKY22 function conferred by the oswrky22 T-DNA insertion allele causes enhanced sensitivity to Al stress, and a reduction in Al-induced citrate secretion. We next show that OsWRKY22 is localized in the nucleus, functions as a transcriptional activator and is able to bind to the promoter of OsFRDL4 via W-box elements. Finally, we find that both OsFRDL4 expression and Al-induced citrate secretion are significantly lower in art1 oswrky22 double mutants than in the respective single mutants. We conclude that OsWRKY22 promotes Al-induced increases in OsFRDL4 expression, thus enhancing Al-induced citrate secretion and Al tolerance in rice.


Subject(s)
Aluminum/toxicity , Carrier Proteins/metabolism , Citric Acid/metabolism , Oryza/genetics , Transcription Factors/metabolism , Carrier Proteins/genetics , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Stress, Physiological , Transcription Factors/genetics
11.
BMC Plant Biol ; 15: 123, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25990386

ABSTRACT

BACKGROUND: Mercury (Hg) is not only a threat to public health but also a growth risk factor to plants, as it is readily accumulated by higher plants. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development; however, the detoxification and tolerance mechanisms of plants to Hg stress are still not fully understood. Exposure to toxic Hg also occurs in some crops cultivated under anoxic conditions, such as rice (Oryza sativa L.), a model organism and one of the most important cultivated plants worldwide. In this study, we functionally characterized a rice translationally controlled tumor protein gene (Os11g43900, OsTCTP) involved in Hg stress tolerance. RESULTS: OsTCTP was ubiquitously expressed in all examined plant tissues, especially in actively dividing and differentiating tissues, such as roots and nodes. OsTCTP was found to localize both the cytosol and the nucleus. OsTCTP was induced by mercuric chloride, cupric sulfate, abscisic acid, and hydrogen peroxide at the protein level in a time-dependent manner. Overexpression of OsTCTP potentiated the activities of several antioxidant enzymes, reduced the Hg-induced H2O2 levels, and promoted Hg tolerance in rice, whereas knockdown of OsTCTP produced opposite effects. And overexpression of OsTCTP did not prevent Hg absorption and accumulation in rice. We also demonstrated that Asn 48 and Asn 97 of OsTCTP amino acids were not the potential N-glycosylation sites. CONCLUSIONS: Our results suggest that OsTCTP is capable of decreasing the Hg-induced reactive oxygen species (ROS), therefore, reducing the damage of ROS and enhancing the tolerance of rice plants to Hg stress. Thus, OsTCTP is a valuable gene for genetic engineering to improve rice performance under Hg contaminated paddy soils.


Subject(s)
Adaptation, Physiological , Mercury/toxicity , Oryza/physiology , Plant Proteins/metabolism , Plant Tumors/genetics , Abscisic Acid/pharmacology , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Antioxidants/metabolism , Copper/toxicity , Gene Dosage , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Mutation , Oryza/drug effects , Oryza/genetics , Phenotype , Phylogeny , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Protein Biosynthesis/drug effects , RNA Interference/drug effects , Sequence Homology, Amino Acid , Stress, Physiological/drug effects , Stress, Physiological/genetics , Structural Homology, Protein , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...