Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 8: 474, 2017.
Article in English | MEDLINE | ID: mdl-28955297

ABSTRACT

This study aims to determine the difference in the inhibitory effect of temozolomide (TMZ) on TJ905 glioma cells and stem cells. TJ905 cancer stem cells were isolated. Livin is a member of the inhibitor of apoptosis protein family. The TJ905 cells and cancer stem cells were transfected with a Livin-shRNA and negative-shRNA, respectively, and then treated with TMZ. At 48 h post-transfection, a cell counting kit 8 assay, flow cytometry, and real-time qPCR were performed to detect cell proliferation, the cell cycle, and the expression of the Caspase-3, -7, and -9 mRNAs, respectively. As a result, the suppressive effect of TMZ on TJ905 cells was more significant than its effect on TJ905 cancer stem cells. TMZ exerted an inhibitory effect on the growth of TJ905 glioma cells by arresting them at G0/G1 phase and arresting cancer stem cells at S phase in a dose-dependent manner. TMZ inhibited Livin mRNA expression and increased the expression of the Caspase-3, -7, and -9 mRNAs. Low Livin mRNA expression induced high levels of Caspase-3, -7, and -9 expressions, thus promoting the apoptosis of both TJ905 cells and cancer stem cells in response to TMZ treatment. The TJ905 cells transfected with the Livin-shRNA were more sensitive to TMZ, whereas the TJ905 glioma stem cells transfected with the Livin-shRNA showed no significant changes in their sensitivity to TMZ. In conclusion, the Livin gene may play an important role in the resistance mechanisms of TJ905 glioma cells and cancer stem cells. However, Livin had a more distinct role in TMZ resistance, cell proliferation, and the cell cycle in TJ905 glioma cells than in cancer stem cells.

2.
Article in English | MEDLINE | ID: mdl-27247607

ABSTRACT

Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 µg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P < 0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P < 0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P < 0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P < 0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study.

3.
Exp Ther Med ; 10(4): 1317-1323, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26622485

ABSTRACT

The aim of the present study was to observe the effect of siRNA-Livin on the expression of multidrug resistance-associated protein (MRP) genes in a U251 cell line and U251 stem cells. CD133+ cancer stem cells were identified and isolated from the U251 glioblastoma cells, and morphological observations were used to detect the cell survival conditions. In addition, quantitative polymerase chain reaction was used to detect the mRNA expression levels of Livin, MRP1 and MRP3. Following transfection with the lentivirus containing the siRNA-Livin, the expression of Livin was significantly inhibited in the U251 cells and stem cells (P<0.01). Following temozolomide intervention, the proliferation of the U251 cells and U251 stem cells was restrained, with a lot of cell debris present and the structure of the cell spheres destroyed. The inhibitory effect was more significant following transfection with siRNA-Livin. Prior to siRNA-Livin transfection, the expression of MRP1 presented an increasing trend in the U251 cells and U251 stem cells with increasing drug concentrations and intervention times (P<0.05). Following siRNA-Livin transfection, the expression of MRP1 decreased in the U251 cells and U251 stem cells under the same drug concentration and intervention time (P<0.05), while the expression of MRP3 increased in the U251 stem cells under the same intervention concentration and time (P<0.05). Therefore, siRNA-Livin was shown to decrease the expression of MRP1 in U251 cells and U251 stem cells, increase the expression of MRP3 in U251 stem cells and decrease the proliferation of U251 cells and U251 stem cells. Thus, Livin may be associated with the high expression of MRP1, and siRNA-Livin may be used to lower the expression of MRP1 in order to reduce the drug resistance to chemotherapy in cases of glioblastoma.

4.
Cancer Cell Int ; 15: 60, 2015.
Article in English | MEDLINE | ID: mdl-26136642

ABSTRACT

BACKGROUND: This study is to explore the pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells. METHODS: CD133 positive TJ905 glioma cells were separated by immunomagnetic beads to isolate glioma stem-like cells. TJ905 cells and stem-like cells were inoculated subcutaneously into the mice to establish model of transplanted tumor, respectively. Mice growing condition and behavior were observed. HE staining assay, immunohistochemical assay for GFAP, Ki-67 and Olig-2, and CD34 marked microvascular density (MVD) test were performed. RESULTS: The growing condition and behavior of mice in TJ905 stem cell group was more exaggerated and the models showed stronger malignant features pathologically than that in TJ905 cell group. Glial fibrillary acidic protein (GFAP) in TJ905 cell and stem-like cell group showed the transplanted tumor originated from astrocytes. Expression of Ki-67 and oligodendrocyte transcription factor-2 (Olig-2) in TJ905 stem cells was higher notably and CD34 expression in stem cell group was significantly higher than that in the other two groups. CONCLUSIONS: Pathological features of transplanted tumor established by CD133 positive glioblastoma stem-like cells show more malignant. Use of TJ905 stem cells to establish transplanted tumor model in nude mice is excellent for glioma research.

SELECTION OF CITATIONS
SEARCH DETAIL
...