Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
JACC Case Rep ; 3(4): 561-565, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34317581

ABSTRACT

A young woman presented with an acute ST-segment elevation myocardial infarction. Her clinical course was complicated by cardiogenic shock and acute renal failure. Work-up revealed thrombocytopenia and hemolytic anemia. A diagnosis of atypical hemolytic-uremic syndrome was made on the basis of clinical and pathological findings. (Level of Difficulty: Intermediate.).

3.
Biol Open ; 10(2)2021 02 25.
Article in English | MEDLINE | ID: mdl-32694189

ABSTRACT

The VEGF pathway is critically required for vasculogenesis, the formation of the primary vascular network. It is also required for angiogenesis resulting in sprouting and pruning of vessels to generate mature arborizing structures. The Notch pathway is essential for arterial-venous specification and the maturation of nascent vessels. We have determined that Tspan18, a member of the Tetraspanin family, is expressed in developing vessels but not in mature vasculature in zebrafish and mouse wound healing. Moreover, reduction at Tspan18 level resulted in aberrant vascular patterning, impaired vessel stability and defective arterial-venous specification. Tspan18 deficiency reduced VEGF, VEGFR2, Notch3 and EphrinB2, and increased EphB4, VEGFR3, Semaphorin3, Neuropilin and PlexinD1 expression. Furthermore, vascular defects of Tspan18 deficiency could be rescued by ectopic expression of VEGFR2 and Notch, but not by knockdown of Semaphorin or Plexin. Functional studies showed that knockdown of Tspan18 led to reduced endothelial cell migration, invasion and tube formation. Tspan18 has dynamic expression, regulates vascular development and maturation in the embryo with re-expression in adult life in wound healing.


Subject(s)
Neovascularization, Physiologic , Receptors, Notch/metabolism , Signal Transduction , Tetraspanins/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression Regulation , Gene Knockdown Techniques , Models, Biological , Neovascularization, Physiologic/genetics , Tetraspanins/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...