Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.664
Filter
1.
Bull Entomol Res ; : 1-7, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828673

ABSTRACT

The social-sexual environment is well known for its influence on the survival of organisms by modulating their reproductive output. However, whether it affects survival indirectly through a variety of cues without physical contact and its influence relative to direct interaction remain largely unknown. In this study, we investigated both the indirect and direct influences of the social-sexual environment on the survival and reproduction of the mite Tyrophagus curvipenis (Acari: Acaridae). The results demonstrated no apparent influence of conspecific cues on the survival of mites, but the survival and reproduction of mated female mites significantly changed, with the females mated with males having a significantly shortened lifespan and increased lifetime fecundity. For males, no significant difference was observed across treatments in their survival and lifespan. These findings indicate that direct interaction with the opposite sex has a much more profound influence on mites than indirect interaction and highlight the urgent need to expand research on how conspecific cues modulate the performance of organisms with more species to clarify their impacts across taxa.

2.
Microb Pathog ; 192: 106723, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823465

ABSTRACT

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.

3.
Pest Manag Sci ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837311

ABSTRACT

BACKGROUND: The biological control agent Phytoseiulus persimilis is a commercialized specialist predator of two agricultural pest mite species Tetranychus urticae and Tetranychus evansi. Biocontrol of these pest species by P. persimilis has achieved success in biological control in some areas. However, the lack of precise information about the influence of global climate change on the worldwide distribution of this biocontrol agent hampers international efforts to manage pest mites with P. persimilis. With 276 occurrence records and 19 bioclimatic variables, this study investigated the potential global distribution of P. persimilis. RESULTS: The results demonstrated that the Maximum Entropy (MaxEnt) model performed well, with the area under the curve being 0.956, indicating the high accuracy of this model. Two variables, the minimum temperature of the coldest month (Bio_6) and precipitation of the coldest quarter (Bio_19) were the most important environmental variables that influenced the distribution of P. persimilis, contributing more than 30% to the model, respectively. The suitable area currently occupies 21.67% of the world's land area, spanning latitudes between 60°S and 60°N. Under shared socio-economic pathway (SSP) 5-8.5 (high-carbon emissions), the low suitable area would increase by 1.31% until the 2050s. CONCLUSION: This study successfully identified that south-eastern China, parts of countries in the Mediterranean coastal regions, including Libya, Algeria, Portugal, Spain, and France, are climatically favorable regions for P. persimilis, providing valuable information about the potential areas where it can be effectively exploited as biocontrol agents in classical biological control programs to manage pest spider mites environmentally friendly. © 2024 Society of Chemical Industry.

4.
Front Genet ; 15: 1385867, 2024.
Article in English | MEDLINE | ID: mdl-38831775

ABSTRACT

Epicardial cells regulate heart growth by secreting numerous growth factors and undergoing lineage specification into other cardiac lineages. However, the lack of specific marker genes for epicardial cells has hindered the understanding of this cell type in heart development. Through the analysis of a cardiac single cell mRNA sequencing dataset, we identified a novel epicardial gene named Keratin 19 (Krt19). Further analysis of the expression patterns of Krt19 and Wt1, a well-known epicardial gene, revealed their preferences in major cardiac cell types. Using lineage-tracing analysis, we analyzed Krt19-CreER labeled cells at multiple time windows and found that it labels epicardial cells at both embryonic and neonatal stages. Furthermore, we studied the function of epicardial cells using a diphtheria toxin A chain (DTA)-based cell ablation system. We discovered that Krt19-CreER labeled cells are essential for fetal heart development. Finally, we investigated the function of Krt19-CreER and Wt1-CreER labeled cells in neonatal mouse development. We observed that the Krt19-CreER; Rosa-DTA mice displayed a smaller size after tamoxifen treatment, suggesting the potential importance of Krt19-CreER labeled cells in neonatal mouse development. Additionally, we found that Wt1-CreER; Rosa-DTA mice died at early stages, likely due to defects in the kidney and spleen. In summary, we have identified Krt19 as a new epicardial cell marker gene and further explored the function of epicardial cells using the Krt19-CreER and Wt1-CreER-mediated DTA ablation system.

5.
Article in English | MEDLINE | ID: mdl-38847173

ABSTRACT

BACKGROUND AND PURPOSE: QiShenYiQi (QSYQ) has shown promise in the treatment of blood-brain barrier (BBB) damage following stroke. However, the identification of its bioactive components and the underlying molecular mechanisms of action remain unknown. This study aimed to investigate the active ingredients and mechanisms involved in the inhibitory effects of QSYQ on BBB damage after ischemic stroke based on network pharmacology and experimental verification. MATERIALS AND METHODS: The chemical composition and target information of QSYQ were obtained from the Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. BBB injury-related targets were identified by screening databases, and the overlapping targets with QSYQ were collected. Cytoscape software was utilized to construct protein-protein interaction (PPI) networks. Molecular docking analysis was conducted using AutoDock software. Animal experiments were carried out to verify the protective effect of QSYQ on BBB and explore potential molecular mechanisms. RESULTS: A total of 131 active ingredients in QSYQ and 154 common targets related to QSYQ and BBB damage were identified. Analysis of the PPI network revealed key targets including ALB, INS, ACTB, TP53, and CASP3 against BBB injury. Molecular docking analysis indicated favorable binding interactions between dihydrotanshinlactone, tanshinone IIA, salviolone, and their respective target proteins, such as FOS, INS, CASP3, and JUN. In animal experiments, QSYQ demonstrated effective inhibition of BBB damage, and this effect may be attributed to the regulation of ALB, INS, TP53, and CASP3. CONCLUSION: This study provides intriguing insights into the mechanisms by which QSYQ protects against BBB injury following ischemic stroke. Key targets, including ALB, INS, TP53, and CASP3, could be potentially involved in the beneficial effects of QSYQ.

6.
Cardiovasc Diabetol ; 23(1): 161, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715070

ABSTRACT

BACKGROUND: The association between the triglyceride-glucose (TyG) index and subclinical left ventricular (LV) systolic dysfunction in obese patients remains unclear. This study aimed to investigate the relationship between the TyG index and LV global longitudinal strain (GLS) in obese patients. METHODS: A total of 1028 obese patients from January 2019 to January 2024 were included in the present study. Clinical parameters and biochemical and echocardiographic data were obtained from the participants. LV GLS was obtained from the GE EchoPAC workstation for evaluating subclinical LV function. The TyG index was calculated as Ln (fasting TG [mg/dL] × fasting glucose [mg/dL]/2). LV GLS was compared between obese patients with a high TyG index and those with a low TyG index. RESULTS: Obese patients with a high TyG index had greater incidences of hypertension, diabetes mellitus and hyperlipidaemia. The LV GLS was significantly lower in the high TyG index group than in the low TyG index group (P = 0.01). After adjusting for sex, age, body mass index, heart rate, hypertension, diabetes mellitus, dyslipidaemia, blood urea nitrogen, serum creatinine, LV mass and LV hypertrophy, the TyG index remained an independent risk indicator related to an LV GLS < 20% (OR: 1.520, 95% CI: 1.040 to 2.221; P = 0.031). CONCLUSIONS: We concluded that an increase in the TyG index is independently associated with subclinical LV systolic dysfunction in obese patients.


Subject(s)
Asymptomatic Diseases , Biomarkers , Blood Glucose , Obesity , Triglycerides , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Male , Female , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/epidemiology , Obesity/diagnosis , Obesity/blood , Obesity/physiopathology , Obesity/epidemiology , Obesity/complications , Middle Aged , Triglycerides/blood , Blood Glucose/metabolism , Biomarkers/blood , Adult , Risk Factors , Risk Assessment , Systole , Aged , Cross-Sectional Studies , Predictive Value of Tests , Retrospective Studies
7.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698521

ABSTRACT

Fusarium pseudograminearum is an important plant pathogen that invades many crops (Zhang et al. 2018). Since it was first discovered in Australia in 1951, F. pseudograminearum has been reported in many countries and regions and caused huge economic losses (Burgess et al. 2001). In 2012, crown rot of wheat caused by F. pseudograminearum was discovered for the first time in Henan Province, China (Li et al. 2012). Wheat (Triticum aestivum L.) is one of the most important food crops in Xinjiang Uygur Autonomous Region (XUAR), with 1.07 million hectares cultivated in 2020. In June 2023, a survey of crown rot disease was carried out in winter wheat cv. Xindong 20 in Hotan area, XUAR, China (80.148907°E, 37.051474°N). About 5% of wheat plants showed symptoms of crown rot such as browning of the stem base and white head. The disease was observed in 85% of wheat fields. In order to identify the pathogens, 36 pieces of diseased stem basal tissue, 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, then rinsed three times with sterile water and placed on potato dextrose agar (PDA) medium at 25°C. A total of 27 isolates with consistent morphological characteristics were obtained using single-spore technique (Leslie and Summerell. 2006), and the isolation rate was 75%. The isolates grew rapidly on PDA, produced large numbers of fluffy white hyphae, and pink pigment accumulated in the medium. The isolates were grown on 2% mung bean flour medium and identified by morphological and molecular methods. Macroconidia were abundant, relatively slender, curved to almost straight, commonly two to seven septate, and averaged 22 to 72 × 1.8 to 4.9 µm. Microconidia were not observed. The morphological characters are consistent with Fusarium (Aoki and O'Donnell. 1999). Two isolates (LP-1 and LP-3) were selected for molecular identification. Primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') were used to amplify a portion of the EF-1α gene (O'Donnell et al. 1998). The two 696 bp PCR products were sequenced and submitted to GenBank. The EF-1α gene sequences (GenBank Accession No: PP062794 and PP062795) shared 99.9% identity (695/696) with published F.pseudograminearum sequences (e.g., OP105187, OP105184, OP105179, OP105173). The identification was further confirmed by F. pseudograminearum species-specific PCR primers Fp1-1/Fp1-2 (Aoki and O'Donnell. 1999). The expected PCR products of 518 bp were produced only in F. pseudograminearum. Pathogenicity tests of LP-1 and LP-3 isolates were performed on 7-day-old seedlings of winter wheat cv. Xindong 20 using the drip inoculation method with a 10-µl of a 106 macroconidia ml-1 suspension near the stem base (Xu et al. 2017). The experiment was repeated five times in a 20 to 25°C greenhouse. Control seedlings were treated with sterile water. After 4 weeks, wheat seedling death and crown browning occurred in the inoculated plants with over 90% incidence. No symptoms were observed in the control plants. The pathogen was reisolated from the inoculated plants by the method described above and identified by morphological and PCR amplification using F. pseudograminearum species-specific primers Fp1-1/Fp1-2. No F. pseudograminearum was isolated from the control plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of winter wheat in XUAR of China. Since F. pseudograminearum can cause great damage to wheat, one of the most important food crops in China, necessary measures should be taken to prevent the spread of F. pseudograminearum to other regions.

8.
Small ; : e2401503, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705860

ABSTRACT

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.

9.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731552

ABSTRACT

Herein, we have developed a new approach for the synthesis of indolizine via Cu-catalyzed reaction of pyridine, acetophenone, and nitroolefin under mild conditions in high yields. This reaction involved the formation of C-N and C-C bonds and new indolizine compounds with high stereoselectivity and excellent functional group tolerance.

10.
Article in English | MEDLINE | ID: mdl-38753528

ABSTRACT

OBJECTIVES: Detection of early neoplastic lesions is crucial for improving the survival rates of patients with gastric cancer. Optical enhancement mode 2 is a new image-enhanced endoscopic technique that offers bright images and can improve the visibility of neoplastic lesions. This study aimed to compare the detection of neoplastic lesions with optical enhancement mode 2 and white-light imaging (WLI) in a high-risk population. METHODS: In this prospective multicenter randomized controlled trial, patients were randomly assigned to optical enhancement mode 2 or WLI groups. Detection of suspicious neoplastic lesions during the examinations was recorded, and pathological diagnoses served as the gold standard. RESULTS: A total of 1211 and 1219 individuals were included in the optical enhancement mode 2 and WLI groups, respectively. The detection rate of neoplastic lesions was significantly higher in the optical enhancement mode 2 group (5.1% vs. 1.9%; risk ratio, 2.656 [95% confidence interval, 1.630-4.330]; p < 0.001). The detection rate of neoplastic lesions with an atrophic gastritis background was significantly higher in the optical enhancement mode 2 group (8.6% vs. 2.6%, p < 0.001). The optical enhancement mode 2 group also had a higher detection rate among endoscopists with different experiences. CONCLUSIONS: Optical enhancement mode 2 was more effective than WLI for detecting neoplastic lesions in the stomach, and can serve as a new method for screening early gastric cancer in clinical practice. CLINICAL REGISTRY: United States National Library of Medicine (https://www. CLINICALTRIALS: gov), ID: NCT040720521.

11.
Ann Diagn Pathol ; 71: 152328, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38754357

ABSTRACT

BACKGROUND: The status of the lung adenocarcinoma (LUAD) grading system and the association between LUAD differentiation, driver genes, and clinicopathological features remain to be elucidated. METHODS: We included patients with invasive non-mucinous LUAD, evaluated their differentiation, and collected available clinicopathological information, gene mutations, and analyzed clinical outcomes. RESULTS: Among the 907 patients with invasive non-mucinous LUAD, 321 (35.4 %) were poorly differentiated, 422 (46.5 %) were moderately differentiated, and 164 (18.1 %) were well differentiated. EGFR mutation was more common in the LUADs accompanied without CGP (complex glandular pattern) than LUADs with CGP (p < 0.001). Correlation analysis between mutations and clinical characteristics showed that EGFR gene mutation (p < 0.001), KRAS gene mutation (p < 0.05), and ALK gene rearrangement (p < 0.001) were significantly related to the degree of tumor differentiation, and the KRAS and ALK gene mutation frequencies were higher in the low-differentiation group than in the high and medium differentiation groups. The EGFR mutation frequency was higher in the well/moderately differentiated adenocarcinoma group. CONCLUSIONS: Our study adds to the evidence regarding the role of the grading system in prognosis. EGFR, KRAS, and ALK are related to the degree of tumor differentiation.

12.
Front Pharmacol ; 15: 1372449, 2024.
Article in English | MEDLINE | ID: mdl-38783945

ABSTRACT

Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.

13.
J Agric Food Chem ; 72(21): 11900-11916, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38709250

ABSTRACT

Food quality and safety are related to the health and safety of people, and food hazards are important influencing factors affecting food safety. It is strongly necessary to develop food safety rapid detection technology to ensure food safety. As a new detection technology, artificial nanochannel-based electrochemical and other methods have the advantages of being real-time, simple, and sensitive and are widely used in the detection of food hazards. In this paper, we review artificial nanochannel sensors as a new detection technology in food safety for different types of food hazards: biological hazards (bacteria, toxins, viruses) and chemical hazards (heavy metals, organic pollutants, food additives). At the same time, we critically discuss the advantages and disadvantages of artificial nanochannel sensor detection, as well as the restrictions and solutions of detection, and finally look forward to the challenges and development prospects of food safety detection technology based on the limitations of artificial nanochannel detection. We expect to provide a theoretical basis and inspiration for the development of rapid real-time detection technology for food hazards and the production of portable detection equipment in the future.


Subject(s)
Biosensing Techniques , Food Contamination , Food Safety , Food Contamination/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Nanostructures/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation
14.
Inorg Chem ; 63(19): 8775-8781, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696247

ABSTRACT

The atomic precision of the subnanometer nanoclusters has provided sound proof on the structural correlation of metal complexes and larger-sized metal nanoparticles. Herein, we report the synthesis, crystallography, structural characterization, electrochemistry, and optical properties of a 133-atom intermetallic nanocluster protected by 57 thiolates (3-methylbenzenethiol, abbreviated as m-MBTH) and 3 chlorides, with the formula of Ag125Cu8(m-MBT)57Cl3. This is the largest Ag-Cu bimetallic cluster ever reported. Crystallographic analysis revealed that the nanocluster has a three-layer concentric core-shell structure, Ag7@Ag47@Ag71Cu8S57Cl3, and the Ag54 metal kernel adopts a D5h symmetry. The nuclei number is between that of the previously reported large silver cluster [Ag136(SR)64Cl3Ag0.45]- and the large silver-rich cluster Au130-xAgx(SR)55 (x = 98). All these three clusters bear a similar metallic core structure, while the main structural difference lies in the shell motif structures. Electron counting revealed an open electron shell with 73 delocalized electrons, which was verified by the electron paramagnetic resonance analysis. The DPV electrochemical measurement indicates a multielectron state quantization double-layer charging shape and single-electron sequential charging and discharging characteristic of the AgCu alloy cluster. In addition, the open-hole Z-scan test reveals the nonlinear optical absorption (2-3 optical absorption in the NIR-II/III region) of Ag125Cu8 nanoclusters.

15.
Exp Eye Res ; 244: 109946, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815794

ABSTRACT

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.

16.
J Colloid Interface Sci ; 670: 519-529, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776687

ABSTRACT

The high theoretical energy density and specific capacity of lithium-sulfur (Li-S) batteries have garnered considerable attention in the prospective market. However, ongoing research on Li-S batteries appears to have encountered a bottleneck, with unresolved key technical challenges such as the significant shuttle effect and sluggish reaction kinetics. This investigation explores the catalytic efficacy of three catalysts for Li-S batteries and elucidates the correlation between their structure and catalytic impacts. The results suggest that the combined utilization of lithium-insertion technology and a proton exchange approach for δ-MnO2 can optimize its electronic structure, resulting in an optimal catalyst (H/Li inserted δ-MnO2, denoted as HLM) for the sulfur reduction reaction. The replacement of Mn sites in δ-MnO2 with Li atoms can enhance the structural stability of the catalyst, while the introduction of H atoms between transition metal layers contributes to the satisfactory catalytic performance of HLM. Theoretical calculations demonstrate that the bond length of Li2S4 adsorbed by the HLM molecule is elongated, thereby facilitating the dissociation process of Li2S4 and enhancing the reaction kinetics in Li-S batteries. Consequently, the Li-S battery utilizing HLM as a catalyst achieves a high areal specific capacity of 4.2 mAh cm-2 with a sulfur loading of 4.1 mg cm-2 and a low electrolyte/sulfur (E/S) ratio of 8 µL mg-1. This study introduces a methodology for designing effective catalysts that could significantly advance practical developments in Li-S battery technology.

17.
ACS Appl Mater Interfaces ; 16(21): 27280-27290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743801

ABSTRACT

The application of composite solid electrolytes (CSEs) in solid-state lithium-metal batteries is limited by the unsatisfactory ionic conductivity underpinned by the low concentration of free lithium ions. Herein, we propose an interface design strategy where an amine silane linker is employed as a coupling agent to graft the Li7La3Zr2O12 (LLZO) ceramic nanofibers to the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer matrix to enhance their interaction. The hydrogen bonding between amino-functionalized LLZO (NH2@LLZO) and PVDF-HFP not only effectively induces a uniform incorporation of high-content nanofibers (50 wt %) into the polymer matrix but also furnishes sufficient continuous surfaces to weaken the complexation between PVDF-HFP and Li-ion carriers. Additionally, introduction of the hydrogen bond and Lewis acid-base interplay strengthens the interfacial interactions between NH2@LLZO and lithium salts that release more free lithium ions for efficient interfacial transport. The impact of the linker's structure on the dissociation capacity of lithium salts is systematically studied from the steric effect perspective, which affords insights into interface design. Conclusively, the composite solid electrolyte achieves a high ionic conductivity (5.8 × 10-4 S cm-1) by synergy of multiple transport channels at ceramic, polymer, and their interface, which effectively regulates the lithium deposition behavior in symmetric cells. The excellent compatibility of the electrolyte with both LiFePO4 and LiNi0.8Co0.1Mn0.1O2 cathodes also results in a long lifetime and a high rate capability for full cells.

18.
Toxicol Lett ; 397: 129-140, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759938

ABSTRACT

Zinc Oxide nanoparticles (ZnO NPs) have dualistic properties due to their advantage and toxicity. However, the impact and mechanisms of ZnO NPs on the prefrontal lobe have limited research. This study investigates the behavioral changes following exposure to ZnO NPs (34 mg/kg, 30 days), integrating multiple behaviors and bioinformatics analysis to identify critical factors and regulatory mechanisms. The essential differentially expressed genes (DEGs) were identified, including ORC1, DSP, AADAT, SLITRK6, and STEAP1. Analysis of the DEGs based on fold change reveals that ZnO NPs primarily regulate cell survival, proliferation, and apoptosis in neural cells, damaging the prefrontal lobe. Moreover, disruption of cell communication, mineral absorption, and immune pathways occurs. Gene set enrichment analysis (GSEA) further shows enrichment of behavior, neuromuscular process, signal transduction in function, synapses-related, cAMP signaling, and immune pathways. Furthermore, alternative splicing (AS) genes highlight synaptic structure/function, synaptic signal transduction, immune responses, cell proliferation, and communication.

19.
Int J Cardiol ; 409: 132199, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782068

ABSTRACT

BACKGROUND: Despite prompt reperfusion, the risk of adverse clinical outcomes following ST-segment-elevation myocardial infarction (STEMI) remains pronounced, owing partly to suboptimal reperfusion. However, coronary functional evaluation is seldom feasible during primary percutaneous coronary intervention (PPCI). We aimed to examine the clinical implication of a simple coronary assessment based on single-angiographic view (µQFR) during PPCI in discriminating impaired coronary flow and adverse outcomes for STEMI. METHODS: STEMI Patients undergoing successful PPCI were enrolled and followed up prospectively from 4 medical centers in China. Post-PPCI µQFR of culprit vessels were analyzed. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiac death, non-fatal MI, ischemia-driven target-vessel revascularization and readmission for heart failure. RESULTS: A total of 570 patients with STEMI were enrolled, and post-PCI µQFR was analyzable in 557 (97.7%) patients, with a median of 0.94. Patients with low post-PCI µQFR showed higher incidence of adverse outcomes than those with high µQFR, showing a 2.5-fold increase in the risk for MACE (hazard ratio: 2.51, 95% confidence intervals: 1.33 to 4.72; P = 0.004). Moreover, post-PCI µQFR significantly increased discriminant ability for the occurrence of MACE when added to traditional GRACE risk score for STEMI (integrated discrimination improvement: 0.029; net reclassification index: 0.229; P < 0.05). CONCLUSIONS: A low µQFR of culprit vessel in PPCI is independently associated with worse clinical outcomes in patients with STEMI. The single-angiographic-view-based coronary evaluation is a feasible tool for discriminating poor prognosis and could serve as a valuable complement in risk stratification for STEMI.

20.
Clin Nutr ; 43(6): 1635-1642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772070

ABSTRACT

BACKGROUND & AIMS: Aquatic food is rich in nutrients which benefit the human brain and cognitive health; however, concerns about heavy metal accumulation in aquatic food remain. This study evaluated the associations between aquatic food consumption, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs) intake, and blood mercury levels with cognition in middle-aged and older adults. METHODS: This cross-sectional study used baseline data from the Lifestyle and Healthy Aging of Chinese Square Dancer Study. Aquatic food consumption and LC n-3 PUFAs intake were obtained from a food frequency questionnaire. Blood mercury levels were measured using inductively coupled plasma mass spectrometry. A composite z-score was developed to represent global cognition by averaging the z-scores for each cognitive domain. Participants with mild cognitive impairment (MCI) were diagnosed according to Petersen's criteria. Multivariate linear and logistic regression models were used to examine the association between the exposure factors and cognitive performance including cognitive scores and MCI. RESULTS: Of 2621 middle-aged and older adults, the mean (SD) age was 63.71 (5.15) years, and 85.73% were females. Compared with the lowest quartile, those in the highest quartile for aquatic food consumption were associated with higher composite z-scores (ß = 0.156, 95% CI: 0.088-0.225) and lower MCI odds (OR = 0.598, 95% CI: 0.425-0.841). A similar positive relationship between LC n-3 PUFAs intake and composite z-score and an inverse association between LC n-3 PUFAs intake and MCI were also observed. In addition, the participants in the highest quartile for blood mercury levels had higher composite z-scores than those in the lowest quartile. CONCLUSIONS: In this cross-sectional study, higher aquatic food consumption, LC n-3 PUFAs intake, and blood mercury levels were related to better cognitive function. Further studies in Chinese populations are required to confirm these findings.


Subject(s)
Cognition , Cognitive Dysfunction , Fatty Acids, Omega-3 , Mercury , Humans , Female , Male , Mercury/blood , Cross-Sectional Studies , Middle Aged , Fatty Acids, Omega-3/blood , Cognition/drug effects , Cognition/physiology , Aged , China , Cognitive Dysfunction/blood , Seafood , Diet/statistics & numerical data , Diet/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...