Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 11(21): 9321-9328, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33089980

ABSTRACT

Enzyme-mimicking inorganic nanoparticles, also known as nanozymes, have emerged as a rapidly expanding family of artificial enzymes that exhibit superior structural robustness and catalytic durability when serving as the surrogates of natural enzymes for widespread applications. However, the performance optimization of inorganic nanozymes has been pursued in a largely empirical fashion due to lack of generic design principles guiding the rational tuning of the nanozyme activities. Here we choose Au surface-roughened nanoparticles as a model plasmonic nanozyme that combines peroxidase-mimicking behaviors with tunable plasmonic characteristics to demonstrate the feasibility of fine-tuning nanozyme activities through plasmonic excitations using visible and near-infrared light sources. Taking full advantage of the unique plasmonic tunability offered by Au surface-roughened nanoparticles, we were able to unravel the detailed relationship between plasmonic excitations and nanozyme activities that underpins the hot electron-mediated working mechanism of peroxidase-mimicking plasmonic nanozymes.


Subject(s)
Biomimetic Materials/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Peroxidases/chemistry , Catalysis , Enzyme Activation , Hydrogen Peroxide/chemistry , Kinetics , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Structure-Activity Relationship , Surface Properties
2.
ACS Appl Mater Interfaces ; 11(26): 23482-23494, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31179681

ABSTRACT

Nanoscale galvanic exchange confined by metallic nanoparticles is an intriguing structure-remodeling process that transforms geometrically simple solid nanoparticles into multimetallic hollow nanoparticles with increased structural complexity and compositional diversity. Using liquid polyols with intrinsic reducing capabilities as the reaction medium for nanoparticle-templated galvanic exchange represents an interesting paradigm shift, allowing us to interface galvanic exchange with oxidative etching and seed-mediated deposition without introducing any additional oxidizing or reducing agents. By kinetically maneuvering the interplay among galvanic Cu-Pt exchange, oxidative Cu etching, and seed-mediated Pt deposition, we have been able to selectively transform AuCu3 alloy nanoparticles into two architecturally distinct multimetallic heteronanostructures, namely, Au-Pt alloy skin-covered spongy nanoparticles and Pt nanodendrite-covered hollow nanoparticles, both of which exhibit unique structural features highly desirable for high-performance electrocatalysis. Using the formic acid oxidation and hydrogen evolution reactions in acidic electrolytes as model electrocatalytic reactions, we show that the multimetallic nanoparticles derived from AuCu3 alloy nanoparticles through polyol-mediated galvanic exchange reactions markedly outperform the commercial Pt/C benchmark catalysts in terms of both activity and durability. This work not only provides important mechanistic insights on how galvanic exchange dynamically interplays with other redox processes to rigorously dictate the versatile structural transformations of multimetallic nanoparticles but also sheds light on the detailed structure-property relationships underpinning the intriguing electrocatalytic behaviors of architecturally complex multimetallic heteronanostructures.

3.
Nanoscale ; 11(15): 7324-7334, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30938391

ABSTRACT

Metal-semiconductor hybrid heteronanostructures exhibit intriguing multimodal photocatalytic behaviors dictated by multiple types of photoexcited charge carriers with distinct energy distribution profiles, excited-state lifetimes, and interfacial transfer dynamics. Here we take full advantage of the optical tunability offered by Au@SnO2 core-shell nanoparticles to systematically tune the frequencies of plasmonic electron oscillations in the visible and near-infrared over a broad spectral range well-below the energy thresholds for the interband transitions of Au and the excitonic excitations of SnO2. Employing Au@SnO2 core-shell nanoparticles as an optically tunable photocatalyst, we have been able to create energetic hot carriers exploitable for photocatalysis by selectively exciting the plasmonic intraband transitions and the d → sp interband transitions in the Au cores at energies below the band gap of the SnO2 shells. Using photocatalytic mineralization of organic dye molecules as model reactions, we show that the interband and plasmonic intraband hot carriers exhibit drastically distinct photocatalytic behaviors in terms of charge transfer pathways, excitation power dependence, and apparent photonic efficiencies. The insights gained from this work form an important knowledge foundation guiding the rational optimization of hot carrier-driven chemical transformations on nanostructured metal-semiconductor hybrid photocatalysts.

4.
Nanoscale ; 10(39): 18457-18462, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30272760

ABSTRACT

This work presents multiple experimental evidences coherently showing that the versatile structural evolution of Au nanocrystals during seed-mediated growth under the guidance of foreign metal ions and halide-containing surfactants is essentially dictated by the dynamic interplay between oxidative etching and nanocrystal growth. Coupling nanocrystal growth with oxidative etching under kinetically controlled conditions enables the in situ surface carving of the growing nanocrystals, through which the surface topography of shape-controlled nanocrystals can be deliberately tailored on the nanometer length-scale.

5.
Langmuir ; 34(14): 4340-4350, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29566338

ABSTRACT

Galvanic replacement reactions dictated by deliberately designed nanoparticulate templates have emerged as a robust and versatile approach that controllably transforms solid monometallic nanocrystals into a diverse set of architecturally more sophisticated multimetallic hollow nanostructures. The galvanic atomic exchange at the nanoparticle/liquid interfaces induces a series of intriguing structure-transforming processes that interplay over multiple time and length scales. Using colloidal Au-Cu alloy and intermetallic nanoparticles as structurally and compositionally fine-tunable bimetallic sacrificial templates, we show that atomically intermixed bimetallic nanocrystals undergo galvanic replacement-driven structural transformations remarkably more complicated than those of their monometallic counterparts. We interpret the versatile structure-transforming behaviors of the bimetallic nanocrystals in the context of a unified mechanistic picture that rigorously interprets the interplay of three key structure-evolutionary pathways: dealloying, Kirkendall diffusion, and Ostwald ripening. By deliberately tuning the compositional stoichiometry and atomic-level structural ordering of the Au-Cu bimetallic nanocrystals, we have been able to fine-maneuver the relative rates of dealloying and Kirkendall diffusion with respect to that of Ostwald ripening through which an entire family of architecturally distinct complex nanostructures are created in a selective and controllable manner upon galvanic replacement reactions. The insights gained from our systematic comparative studies form a central knowledge framework that allows us to fully understand how multiple classic effects and processes interplay within the confinement by a colloidal nanocrystal to synergistically guide the structural transformations of complex nanostructures at both the atomic and nanoparticulate levels.

6.
Nano Lett ; 17(7): 4443-4452, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28590743

ABSTRACT

The interfacial adsorption, desorption, and exchange behaviors of thiolated ligands on nanotextured Au nanoparticle surfaces exhibit phenomenal site-to-site variations essentially dictated by the local surface curvatures, resulting in heterogeneous thermodynamic and kinetic profiles remarkably more sophisticated than those associated with the self-assembly of organothiol ligand monolayers on atomically flat Au surfaces. Here we use plasmon-enhanced Raman scattering as a spectroscopic tool combining time-resolving and molecular fingerprinting capabilities to quantitatively correlate the ligand dynamics with detailed molecular structures in real time under a diverse set of ligand adsorption, desorption, and exchange conditions at both equilibrium and nonequilibrium states, which enables us to delineate the effects of nanoscale surface curvature on the binding affinity, cooperativity, structural ordering, and the adsorption/desorption/exchange kinetics of organothiol ligands on colloidal Au nanoparticles. This work provides mechanistic insights on the key thermodynamic, kinetic, and geometric factors underpinning the surface curvature-dependent interfacial ligand behaviors, which serve as a central knowledge framework guiding the site-selective incorporation of desired surface functionalities into individual metallic nanoparticles for specific applications.

7.
ACS Nano ; 11(3): 3213-3228, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28230971

ABSTRACT

Kinetically controlled, seed-mediated co-reduction provides a robust and versatile synthetic approach to multimetallic nanoparticles with precisely controlled geometries and compositions. Here, we demonstrate that single-crystalline cylindrical Au nanorods selectively transform into a series of structurally distinct Au@Au-Pd alloy core-shell bimetallic nanorods with exotic multifaceted geometries enclosed by specific types of facets upon seed-mediated Au-Pd co-reduction under diffusion-controlled conditions. By adjusting several key synthetic parameters, such as the Pd/Au precursor ratio, the reducing agent concentration, the capping surfactant concentration, and foreign metal ion additives, we have been able to simultaneously fine-tailor the atomic-level surface structures and fine-tune the compositional stoichiometries of the multifaceted Au-Pd bimetallic nanorods. Using the catalytic hydrogenation of 4-nitrophenol by ammonia borane as a model reaction obeying the Langmuir-Hinshelwood kinetics, we further show that the relative surface binding affinities of the reactants and the rates of interfacial charge transfers, both of which play key roles in determining the overall reaction kinetics, strongly depend upon the surface atomic coordinations and the compositional stoichiometries of the colloidal Au-Pd alloy nanocatalysts. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric evolution of multimetallic nanocrystals during seed-mediated co-reduction but also provide an important knowledge framework that guides the rational design of architecturally sophisticated multimetallic nanostructures toward optimization of catalytic molecular transformations.

8.
Nano Lett ; 16(11): 7248-7253, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27690465

ABSTRACT

Percolation dealloying of multimetallic alloys entangles the selective dissolution of the less-noble elements with nanoscale restructuring of the more-noble components, resulting in the formation of spongelike, nanoporous architectures with a unique set of structural characteristics highly desirable for heterogeneous catalysis. Although the dealloyed nanoporous materials are compositionally dominated by the more-noble elements, they inevitably contain residual less-noble elements that cannot be completely removed through the percolation dealloying process. How to employ the less-noble elements to rationally guide the structural evolution and optimize the catalytic performances of the dealloyed noble metal nanocatalysts still remains largely unexplored. Here, we have discovered that incorporation of Ag into Au-Cu binary alloy nanoparticles substantially enhances the Cu leaching kinetics while effectively suppressing the ligament coarsening during the nanoporosity-evolving percolation dealloying of the alloy nanoparticles. The controlled coleaching of Ag and Cu from Au-Ag-Cu ternary alloy nanoparticles provides a unique way to optimize both the surface area-to-mass ratios and specific activities of the dealloyed nanosponge particles for the electrocatalytic oxidation of alcohols. The residual Ag in the fully dealloyed nanosponge particles plays crucial roles in stabilizing the surface active sites and maintaining the nanoporous architectures during the electrocatalytic reactions, thereby greatly enhancing the durability of the electrocatalysts. The insights gained from this work shed light on the underlying roles of residual less-noble elements that are crucial to the rational optimization of electrocatalysis on noble-metal nanostructures.

9.
ACS Appl Mater Interfaces ; 8(36): 23920-31, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27557567

ABSTRACT

Atomic-level understanding of the structural transformations of multimetallic nanoparticles triggered by external stimuli is of vital importance to the enhancement of our capabilities to fine-tailor the key structural parameters and thereby to precisely tune the properties of the nanoparticles. Here, we show that, upon thermal annealing in a reducing atmosphere, Au@Cu2O core-shell nanoparticles transform into Au-Cu alloy nanoparticles with tunable compositional stoichiometries that are predetermined by the relative core and shell dimensions of their parental core-shell nanoparticle precursors. The Au-Cu alloy nanoparticles exhibit distinct dealloying behaviors that are dependent upon their Cu/Au stoichiometric ratios. For Au-Cu alloy nanoparticles with Cu atomic fractions above the parting limit, nanoporosity-evolving percolation dealloying occurs upon exposure of the alloy nanoparticles to appropriate chemical etchants, resulting in the formation of particulate spongy nanoframes with solid/void bicontinuous morphology composed of hierarchically interconnected nanoligaments. The nanoporosity evolution during percolation dealloying is synergistically guided by two intertwining structural rearrangement processes, ligament domain coarsening driven by thermodynamics and framework expansion driven by Kirkendall effects, both of which can be maneuvered by controlling the Cu leaching rates during the percolation dealloying. The dealloyed nanoframes possess large open surface areas accessible by the reactant molecules and high abundance of catalytically active undercoordinated atoms on the ligament surfaces, two unique structural features highly desirable for high-performance electrocatalysis. Using the room temperature electro-oxidation of methanol as a model reaction, we further demonstrate that, through controlled percolation dealloying of Au-Cu alloy nanoparticles, both the electrochemically active surface areas and the specific activity of the dealloyed metallic nanoframes can be systematically tuned to achieve the optimal electrocatalytic activities.

10.
Adv Mater ; 28(37): 8218-8226, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27459898

ABSTRACT

Gold-nanosponge-based multistimuli-responsive drug vehicles are constructed for combined chemo-photothermal therapy with pinpointed drug delivery and release capabilities and minimized nonspecific systemic spread of drugs, remarkably enhancing the therapeutic efficiency while minimizing acute side effects.


Subject(s)
Nanostructures , Doxorubicin , Drug Delivery Systems , Gold
SELECTION OF CITATIONS
SEARCH DETAIL
...