Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5107, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877001

ABSTRACT

Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.


Subject(s)
14-3-3 Proteins , Arabidopsis Proteins , Arabidopsis , Phytic Acid , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Phytic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Mutation , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Inositol Phosphates/metabolism
2.
Cell Res ; 34(4): 281-294, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200278

ABSTRACT

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Aluminum/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Ions , Soil , Gene Expression Regulation, Plant , Transcription Factors/metabolism
3.
Curr Biol ; 34(2): 313-326.e7, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38101405

ABSTRACT

Root hairs are tubular-shaped outgrowths of epidermal cells essential for plants acquiring water and nutrients from the soil. Despite their importance, the growth of root hairs is finite. How this determinate growth is precisely regulated remains largely unknown. Here we identify LONG ROOT HAIR (LRH), a GYF domain-containing protein, as a unique repressor of root hair growth. We show that LRH inhibits the association of eukaryotic translation initiation factor 4Es (eIF4Es) with the mRNA of ROOT HAIR DEFECTIVE6-LIKE4 (RSL4) that encodes the master regulator of root hair growth, repressing RSL4 translation and thus root hair elongation. RSL4 in turn directly transactivates LRH expression to maintain a proper LRH gradient in the trichoblasts. Our findings reveal a previously uncharacterized LRH-RSL4 feedback regulatory loop that limits root hair growth, shedding new light on the mechanism underlying the determinate growth of root hairs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Feedback , Plant Roots , Cell Proliferation , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Transcription Factors/metabolism
4.
J Integr Plant Biol ; 65(4): 934-949, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36515424

ABSTRACT

Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Aluminum/toxicity , Putrescine/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Roots/metabolism
5.
J Integr Plant Biol ; 64(5): 979-994, 2022 May.
Article in English | MEDLINE | ID: mdl-35274464

ABSTRACT

Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Membrane Transport Proteins/metabolism , Mutation/genetics , Plant Leaves/metabolism , Plant Senescence , Plant Stomata/physiology
6.
Mol Plant ; 14(9): 1554-1568, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34216828

ABSTRACT

Phosphorus (P) is an indispensable macronutrient required for plant growth and development. Natural phosphate (Pi) reserves are finite, and a better understanding of Pi utilization by crops is therefore vital for worldwide food security. Ammonium has long been known to enhance Pi acquisition efficiency in agriculture; however, the molecular mechanisms coordinating Pi nutrition and ammonium remains unclear. Here, we reveal that ammonium is a novel initiator that stimulates the accumulation of a key regulatory protein, STOP1, in the nuclei of Arabidopsis root cells under Pi deficiency. We show that Pi deficiency promotes ammonium uptake mediated by AMT1 transporters and causes rapid acidification of the root surface. Rhizosphere acidification-triggered STOP1 accumulation activates the excretion of organic acids, which help to solubilize Pi from insoluble iron or calcium phosphates. Ammonium uptake by AMT1 transporters is downregulated by a CIPK23 protein kinase whose expression is directly modulated by STOP1 when ammonium reaches toxic levels. Taken together, we have identified a STOP1-centered regulatory network that links external ammonium with efficient Pi acquisition from insoluble phosphate sources. These findings provide a framework for developing possible strategies to improve crop production by enhancing the utilization of non-bioavailable nutrients in soil.


Subject(s)
Ammonium Compounds/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphates/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Iron/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics
7.
Mol Plant ; 14(10): 1624-1639, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34116221

ABSTRACT

Iron (Fe) storage in plant seeds is not only necessary for seedling establishment following germination but is also a major source of dietary Fe for humans and other animals. Accumulation of Fe in seeds is known to be low during early seed development. However, the underlying mechanism and biological significance remain elusive. Here, we show that reduced expression of Arabidopsis YABBY transcription factor INNER NO OUTER (INO) increases embryonic Fe accumulation, while transgenic overexpression of INO results in the opposite effect. INO is highly expressed during early seed development, and decreased INO expression increases the expression of NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1), which encodes a transporter that contributes to seed Fe loading. The relatively high embryonic Fe accumulation conferred by decreased INO expression is rescued by the nramp1 loss-of-function mutation. We further demonstrated that INO represses NRAMP1 expression by binding to NRAMP1-specific promoter region. Interestingly, we found that excessive Fe loading into developing seeds of ino mutants results in greater oxidative damage, leading to increased cell death and seed abortion, a phenotype that can be rescued by the nramp1 mutation. Taken together, these results indicate that INO plays an important role in safeguarding reproduction by reducing Fe loading into developing seeds by repressing NRAMP1 expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Iron/metabolism , Seedlings/growth & development , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Cation Transport Proteins/biosynthesis , Cation Transport Proteins/genetics , Gene Expression Regulation, Plant , Iron/toxicity , Promoter Regions, Genetic , Protein Binding , Reproduction , Seedlings/genetics , Seedlings/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
8.
Plant Commun ; 2(3): 100182, 2021 05 10.
Article in English | MEDLINE | ID: mdl-34027395

ABSTRACT

Unlike most crops, in which soil acidity severely limits productivity, tea (Camellia sinensis) actually prefers acid soils (pH 4.0-5.5). Specifically, tea is very tolerant of acidity-promoted aluminum (Al) toxicity, a major factor that limits the yield of most other crops, and it even requires Al for optimum growth. Understanding tea Al tolerance and Al-stimulatory mechanisms could therefore be fundamental for the future development of crops adapted to acid soils. Here, we summarize the Al-tolerance mechanisms of tea plants, propose possible mechanistic explanations for the stimulation of tea growth by Al based on recent research, and put forward ideas for future crop breeding for acid soils.


Subject(s)
Aluminum/metabolism , Camellia sinensis/physiology , Plant Breeding , Soil/chemistry , Camellia sinensis/genetics
9.
Chin Med J (Engl) ; 134(3): 334-343, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33278092

ABSTRACT

BACKGROUND: High agglomeration of myeloid-derived suppressor cells (MDSCs) in neuroblastoma (NB) impeded therapeutic effects. This study aimed to investigate the role and mechanism of targeted inhibition of MDSCs by low-dose doxorubicin (DOX) to enhance immune efficacy in NB. METHODS: Bagg albino (BALB/c) mice were used as tumor-bearing mouse models by injecting Neuro-2a cells, and MDSCs were eliminated by DOX or dopamine (DA) administration. Tumor-bearing mice were randomly divided into 2.5 mg/kg DOX, 5.0 mg/kg DOX, 50.0 mg/kg DA, and control groups (n = 20). The optimal drug and its concentration for MDSC inhibition were selected according to tumor inhibition. NB antigen-specific cytotoxic T cells (CTLs) were prepared. Tumor-bearing mice were randomly divided into DOX, CTL, anti-ganglioside (GD2), DOX+CTL, DOX+anti-GD2, and control groups. Following low-dose DOX administration, immunotherapy was applied. The levels of human leukocyte antigen (HLA)-I, CD8, interleukin (IL)-2 and interferon (IFN)-γ in peripheral blood, CTLs, T-helper 1 (Thl)/Th2 cytokines, perforin, granzyme and tumor growth were compared among the groups. The Wilcoxon two-sample test and repeated-measures analysis of variance were used to analyze results. RESULTS: The slowest tumor growth (F = 6.095, P = 0.018) and strongest MDSC inhibition (F = 14.632, P = 0.001) were observed in 2.5 mg/kg DOX group. Proliferation of T cells was increased (F = 448.721, P < 0.001) and then decreased (F = 2.047, P = 0.186). After low-dose DOX administration, HLA-I (F = 222.489), CD8 (F = 271.686), Thl/Th2 cytokines, CD4+ and CD8+ lymphocytes, granzyme (F = 2376.475) and perforin (F = 488.531) in tumor, IL-2 (F = 62.951) and IFN-γ (F = 240.709) in peripheral blood of each immunotherapy group were all higher compared with the control group (all of P values < 0.05). The most significant increases in the aforementioned indexes and the most notable tumor growth inhibition were observed in DOX+anti-GD2 and DOX+CTL groups. CONCLUSIONS: Low-dose DOX can be used as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering immune efficacy in NB.


Subject(s)
Myeloid-Derived Suppressor Cells , Neuroblastoma , Animals , Doxorubicin/therapeutic use , Mice , Mice, Inbred C57BL , Neuroblastoma/drug therapy , Tumor Microenvironment
10.
J Integr Plant Biol ; 62(8): 1193-1212, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32619040

ABSTRACT

Because Iron (Fe) is an essential element, Fe storage in plant seeds is necessary for seedling establishment following germination. However, the mechanisms controlling seed Fe storage during seed development remain largely unknown. Here we reveal that an ERF95 transcription factor regulates Arabidopsis seed Fe accumulation. We show that expression of ERF95 increases during seed maturation, and that lack of ERF95 reduces seed Fe accumulation, consequently increasing sensitivity to Fe deficiency during seedling establishment. Conversely, overexpression of ERF95 has the opposite effects. We show that lack of ERF95 decreases abundance of FER1 messenger RNA in developing seed, which encodes Fe-sequestering ferritin. Accordingly, a fer1-1 loss-of-function mutation confers reduced seed Fe accumulation, and suppresses ERF95-promoted seed Fe accumulation. In addition, ERF95 binds to specific FER1 promoter GCC-boxes and transactivates FER1 expression. We show that ERF95 expression in maturing seed is dependent on EIN3, the master transcriptional regulator of ethylene signaling. While lack of EIN3 reduces seed Fe content, overexpression of ERF95 rescues Fe accumulation in the seed of ein3 loss-of-function mutant. Finally, we show that ethylene production increases during seed maturation. We conclude that ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ethylenes/pharmacology , Iron/metabolism , Seeds/genetics , Seeds/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Base Sequence , Gene Expression Regulation, Plant/drug effects , Promoter Regions, Genetic , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Transcription Factors/genetics
11.
J Integr Plant Biol ; 62(2): 218-227, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30912267

ABSTRACT

Jasmonic acid (JA) is thought to be involved in plant responses to cadmium (Cd) stress, but the underlying molecular mechanisms are poorly understood. Here, we show that Cd treatment rapidly induces the expression of genes promoting endogenous JA synthesis, and subsequently increases the JA concentration in Arabidopsis roots. Furthermore, exogenous methyl jasmonate (MeJA) alleviates Cd-generated chlorosis of new leaves by decreasing the Cd concentration in root cell sap and shoot, and decreasing the expression of the AtIRT1, AtHMA2 and AtHMA4 genes promoting Cd uptake and long-distance translocation, respectively. In contrast, mutation of a key JA synthesis gene, AtAOS, greatly enhances the expression of AtIRT1, AtHMA2 and AtHMA4, increases Cd concentration in both roots and shoots, and confers increased sensitivity to Cd. Exogenous MeJA recovers the enhanced Cd-sensitivity of the ataos mutant, but not of atcoi1, a JA receptor mutant. In addition, exogenous MeJA reduces NO levels in Cd-stressed Arabidopsis root tips. Taken together, our results suggest that Cd-induced JA acts via the JA signaling pathway and its effects on NO levels to positively restrict Cd accumulation and alleviates Cd toxicity in Arabidopsis via suppression of the expression of genes promoting Cd uptake and long-distance translocation.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/metabolism , Cadmium/metabolism , Cadmium/toxicity , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Acetates/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics
12.
J Integr Plant Biol ; 62(8): 1176-1192, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31729146

ABSTRACT

Modification of cell wall properties has been considered as one of the determinants that confer aluminum (Al) tolerance in plants, while how cell wall modifying processes are regulated remains elusive. Here, we present a WRKY transcription factor WRKY47 involved in Al tolerance and root growth. Lack of WRKY47 significantly reduces, while overexpression of it increases Al tolerance. We show that lack of WRKY47 substantially affects subcellular Al distribution in the root, with Al content decreased in apoplast and increased in symplast, which is attributed to the reduced cell wall Al-binding capacity conferred by the decreased content of hemicellulose I in the wrky47-1 mutant. Based on microarray, real time-quantitative polymerase chain reaction and chromatin immunoprecipitation assays, we further show that WRKY47 directly regulates the expression of EXTENSIN-LIKE PROTEIN (ELP) and XYLOGLUCAN ENDOTRANSGLUCOSYLASE-HYDROLASES17 (XTH17) responsible for cell wall modification. Increasing the expression of ELP and XTH17 rescued Al tolerance as well as root growth in wrky47-1 mutant. In summary, our results demonstrate that WRKY47 is required for root growth under both normal and Al stress conditions via direct regulation of cell wall modification genes, and that the balance of Al distribution between root apoplast and symplast conferred by WRKY47 is important for Al tolerance.


Subject(s)
Adaptation, Physiological/genetics , Aluminum/toxicity , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Cell Wall/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Transcription Factors, General/metabolism , Adaptation, Physiological/drug effects , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Cell Wall/drug effects , Mutation/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , Polysaccharides/metabolism , Promoter Regions, Genetic/genetics , Subcellular Fractions/metabolism , Transcription Factors, General/genetics
13.
J Exp Bot ; 70(5): 1581-1595, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30649526

ABSTRACT

WRKY transcription factors have been implicated in both plant immunity and plant responses to cadmium (Cd); however, the mechanism underlying the crosstalk between these processes is unclear. Here, we characterized the roles of CaWRKY41, a group III WRKY transcription factor, in immunity against the pathogenic bacterium Ralstonia solanacearum and Cd stress responses in pepper (Capsicum annuum). CaWRKY41 was transcriptionally up-regulated in response to Cd exposure, R. solanacearum inoculation, and H2O2 treatment. Virus-induced silencing of CaWRKY41 increased Cd tolerance and R. solanacearum susceptibility, while heterologous overexpression of CaWRKY41 in Arabidopsis impaired Cd tolerance, and enhanced Cd and zinc (Zn) uptake and H2O2 accumulation. Genes encoding reactive oxygen species-scavenging enzymes were down-regulated in CaWRKY41-overexpressing Arabidopsis plants, whereas genes encoding Zn transporters and enzymes involved in H2O2 production were up-regulated. Consistent with these findings, the ocp3 (overexpressor of cationic peroxidase 3) mutant, which has elevated H2O2 levels, displayed enhanced sensitivity to Cd stress. These results suggest that a positive feedback loop between H2O2 accumulation and CaWRKY41 up-regulation coordinates the responses of pepper to R. solanacearum inoculation and Cd exposure. This mechanism might reduce Cd tolerance by increasing Cd uptake via Zn transporters, while enhancing resistance to R. solanacearum.


Subject(s)
Cadmium/adverse effects , Capsicum/genetics , Hydrogen Peroxide/metabolism , Plant Diseases/immunology , Plant Proteins/genetics , Ralstonia solanacearum/physiology , Transcription Factors/genetics , Arabidopsis/genetics , Capsicum/drug effects , Capsicum/immunology , Capsicum/microbiology , Disease Resistance/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism
14.
Opt Express ; 26(19): 24307-24317, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469552

ABSTRACT

Two-dimensional (2D) coupled resonant optical waveguide (CROW), exhibiting topological edge states, provides an efficient platform for designing integrated topological photonic devices. In this paper, we propose an experimentally feasible design of 2D honeycomb CROW photonic structure. The characteristic optical system possesses two-fold and three-fold Dirac points at different positions in the Brillouin zone. The effective gauge fields implemented by the intrinsic pseudo-spin-orbit interaction open up topologically nontrivial bandgaps through the Dirac points. Spatial lattice geometries allow destructive wave interference, leading to a dispersionless, near-flat energy band in the vicinity of the three-fold Dirac point in the telecommunication frequency regime. This nontrivial structure with a near-flat band yields topologically protected edge states. These characteristics underpin the fundamental importance as well as the potential applications in various optical devices. Based on the honeycomb CROW lattice, we design the shape-independent topological cavity and the beam splitter, which demonstrate the relevance for a wide range of photonic applications.

15.
New Phytol ; 219(1): 149-162, 2018 07.
Article in English | MEDLINE | ID: mdl-29658118

ABSTRACT

Whilst WRKY transcription factors are known to be involved in diverse plant responses to biotic stresses, their involvement in abiotic stress tolerance is poorly understood. OsFRDL4, encoding a citrate transporter, has been reported to be regulated by ALUMINUM (Al) RESISTANCE TRANSCRIPTION FACTOR 1 (ART1) in rice, but whether it is also regulated by other transcription factors is unknown. We define the role of OsWRKY22 in response to Al stress in rice by using mutation and transgenic complementation assays, and characterize the regulation of OsFRDL4 by OsWRKY22 via yeas one-hybrid, electrophoretic mobility shift assay and ChIP-quantitative PCR. We demonstrate that loss of OsWRKY22 function conferred by the oswrky22 T-DNA insertion allele causes enhanced sensitivity to Al stress, and a reduction in Al-induced citrate secretion. We next show that OsWRKY22 is localized in the nucleus, functions as a transcriptional activator and is able to bind to the promoter of OsFRDL4 via W-box elements. Finally, we find that both OsFRDL4 expression and Al-induced citrate secretion are significantly lower in art1 oswrky22 double mutants than in the respective single mutants. We conclude that OsWRKY22 promotes Al-induced increases in OsFRDL4 expression, thus enhancing Al-induced citrate secretion and Al tolerance in rice.


Subject(s)
Aluminum/toxicity , Carrier Proteins/metabolism , Citric Acid/metabolism , Oryza/genetics , Transcription Factors/metabolism , Carrier Proteins/genetics , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Stress, Physiological , Transcription Factors/genetics
16.
Sci Rep ; 8(1): 428, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323145

ABSTRACT

Although xyloglucan (XyG) is reported to bind Aluminium (Al), the influence of XyG fucosylation on the cell wall Al binding capacity and plant Al stress responses is unclear. We show that Arabidopsis T-DNA insertion mutants with reduced AXY3 (XYLOSIDASE1) function and consequent reduced levels of fucosylated XyG are more sensitive to Al than wild-type Col-0 (WT). In contrast, T-DNA insertion mutants with reduced AXY8 (FUC95A) function and consequent increased levels of fucosylated XyG are more Al resistant. AXY3 transcript levels are strongly down regulated in response to 30 min Al treatment, whilst AXY8 transcript levels also repressed until 6 h following treatment onset. Mutants lacking AXY3 or AXY8 function exhibit opposing effects on Al contents of root cell wall and cell wall hemicellulose components. However, there was no difference in the amount of Al retained in the pectin components between mutants and WT. Finally, whilst the total sugar content of the hemicellulose fraction did not change, the altered hemicellulose Al content of the mutants is shown to be a likely consequence of their different XyG fucosylation levels. We conclude that variation in XyG fucosylation levels influences the Al sensitivity of Arabidopsis by affecting the Al-binding capacity of hemicellulose.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Fucose/metabolism , Glucans/chemistry , Polysaccharides/metabolism , Xylans/chemistry , Aluminum , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/genetics , Cell Wall/metabolism , DNA, Bacterial/genetics , Mutagenesis, Insertional , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Xylosidases/genetics , alpha-L-Fucosidase/genetics
17.
J Cancer Res Ther ; 12(2): 693-8, 2016.
Article in English | MEDLINE | ID: mdl-27461635

ABSTRACT

AIMS: Recently, accumulating evidence indicates that dysregulation of microRNAs is associated with the initiation and progression of cancer. Oncogenic miR-301a has been reported upregulation and associated with tumorigenesis and progression in various types of cancer. The aim of this study was to investigate the expression of miR-301a in nonsmall-cell lung cancer. (NSCLC), and to assess its association with malignancy, metastasis and prognosis. SUBJECTS AND METHODS: total of 88 NSCLC patients (females = 21 and males = 67), aged 15-81 years were included in the study. miR-301a expression in tumor tissue was estimated by real-time quantitative reverse transcription polymerase chain reaction. RESULTS: miR-301a was significantly upregulated in NSCLC tissues compared with their paired adjacent nontumor tissues. (P < 0.001). Increased expression of miR-301a was detected in tumors with lymph node metastases. (P =0.003). In addition, high miR-301a expression was significantly associated with poorly differentiation. (P =0.015), lymph node metastasis. (P =0.013) and advanced tumor-node-metastasis. (TNM) stage. (P =0.018). A. comparison of survival curves of low versus high expressers of miR-301a revealed a highly significant difference in NSCLC, which suggests that overexpression of miR-301a is associated with a poorer disease-free survival (DFS) (P =0.002). Moreover, multivariate Cox proportional hazard regression analyses revealed that the miR-301a overexpression was an unfavorable prognostic factor for disease-free survival in addition to TNM stage. CONCLUSIONS: miR-301a may represent a novel prognostic indicator, a biomarker for the early detection of lymph node metastasis and a therapeutic target in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , Adult , Aged , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/mortality , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Risk Factors
18.
Plant Physiol ; 171(3): 2017-27, 2016 07.
Article in English | MEDLINE | ID: mdl-27208259

ABSTRACT

Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Iron/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biological Transport , Gene Expression Regulation, Plant , Mutation , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
19.
Oncol Lett ; 10(4): 1979-1984, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26622783

ABSTRACT

The inhibition of apoptosis in cancer cells is the major pathological feature of hepatic carcinoma. Rosiglitazone (RGZ), a ligand for peroxisome proliferator-activated receptor γ (PPAR-γ), has been shown to induce apoptosis in hepatic carcinoma cells. However, the mechanism underlying this effect remains to be elucidated. The present study aimed to investigate the effect of RGZ on cell viability and apoptosis, and its mechanisms in cultured HepG2 cells using MTT assay, flow cytometry and western blotting. The results revealed that treatment with RGZ may attenuate HepG2 cell viability and induce the apoptosis of the cells. The mechanism of RGZ-induced apoptosis involves an increase in the level of activated PPAR-γ (p-PPAR-γ) and a decrease in p85 and Akt expression. In addition, the PPAR-γ antagonist GW9662 suppressed the effect of RGZ in the HepG2 cells. Taken together, the results suggest that RGZ induces the apoptosis of HepG2 cells through the activation of PPAR-γ, suppressing the activation of the PI3K/Akt signaling pathway. Such mechanisms may contribute to the favorable effects of treatment using RGZ in HepG2 cells.

20.
Plant J ; 84(1): 56-69, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26252246

ABSTRACT

The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Osmotic Pressure , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/metabolism , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Plant Roots/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...