Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Bioeng Biotechnol ; 12: 1364741, 2024.
Article in English | MEDLINE | ID: mdl-38468687

ABSTRACT

Existing evaluation criteria for head impact injuries are typically based on time-domain features, and less attention has been paid to head frequency responses for head impact injury assessment. The purpose of the current study is, therefore, to understand the characteristics of human body head frequency response in blunt impacts via finite element (FE) modeling and the wavelet packet analysis method. FE simulation results show that head frequency response in blunt impacts could be affected by the impact boundary condition. The head energy peak and its frequency increase with the increase in impact; a stiffer impact block is associated with a higher head energy peak, and a bigger impact block could result in a high proportion of the energy peak. Regression analysis indicates that only the head energy peak has a high correlation with exiting head injury criteria, which implies that the amplitude-frequency aggregation characteristic but not the frequency itself of the head acceleration response has predictability for head impact injury in blunt impacts. The findings of the current study may provide additional criteria for head impact injury evaluation and new ideas for head impact injury protection.

2.
Entropy (Basel) ; 25(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36981411

ABSTRACT

Utilizing low-rank prior data in compressed sensing (CS) schemes for Landsat 8-9 remote sensing images (RSIs) has recently received widespread attention. Nevertheless, most CS algorithms focus on the sparsity of an RSI and ignore its low-rank (LR) nature. Therefore, this paper proposes a new CS reconstruction algorithm for Landsat 8-9 remote sensing images based on a non-local optimization framework (NLOF) that is combined with non-convex Laplace functions (NCLF) used for the low-rank approximation (LAA). Since the developed algorithm is based on an approximate low-rank model of the Laplace function, it can adaptively assign different weights to different singular values. Moreover, exploiting the structural sparsity (SS) and low-rank (LR) between the image patches enables the restored image to obtain better CS reconstruction results of Landsat 8-9 RSI than the existing models. For the proposed scheme, first, a CS reconstruction model is proposed using the non-local low-rank regularization (NLLRR) and variational framework. Then, the image patch grouping and Laplace function are used as regularization/penalty terms to constrain the CS reconstruction model. Finally, to effectively solve the rank minimization problem, the alternating direction multiplier method (ADMM) is used to solve the model. Extensive numerical experimental results demonstrate that the non-local variational framework (NLVF) combined with the low-rank approximate regularization (LRAR) method of non-convex Laplace function (NCLF) can obtain better reconstruction results than the more advanced image CS reconstruction algorithms. At the same time, the model preserves the details of Landsat 8-9 RSIs and the boundaries of the transition areas.

3.
Acta Bioeng Biomech ; 24(3): 57-67, 2022.
Article in English | MEDLINE | ID: mdl-38314491

ABSTRACT

PURPOSE: The purpose of the current study is to understand pedestrian kinematics, biomechanical response and injury risk in high speed vehicle crashes. METHODS: Vehicle-to-pedestrian crashes at the impact speeds of 40 km/h (reference set) and 70 km/h (analysis set) were simulated employing FE models of a sedan front and an SUV front together with a pedestrian FE model developed using hollow structures. The predictions from crash simulations of different vehicle types and impact speeds were compared and analyzed. RESULTS: In crashes at 70 km/h, pedestrian head-vehicle contact velocity is by about 20-30% higher than the vehicle impact speed, the peak head angular velocity exceeds 100 rad/s and is close to the instant of head-vehicle contact, brain strain appears two peaks and the second peak (after head contact) is obviously higher than the first (before head contact), and AIS4+ head injury risk is above 50%, excessive thorax compression induces rib fractures and lung compression, both sedan and SUV cases show a high risk (>70%) of AIS3 + thorax injury, and the risk of AIS4 + thorax injury is lower than 40% in the sedan case and higher than 50% for the SUV case. CONCLUSIONS: Pedestrians in vehicle crashes at 70 km/h have a higher AIS3 + /AIS4 + head and thorax injury risk, high vehicle impact speed is more easily to induce a high head angular velocity at the instant of head-vehicle contact, brain strain is strongly associated with the combined effect of head rotational velocity and acceleration, and pedestrian thorax injury risk is more sensitive to vehicle impact speed than the head.

4.
Acta Bioeng Biomech ; 23(2): 33-40, 2021.
Article in English | MEDLINE | ID: mdl-34846044

ABSTRACT

PURPOSE: The purpose of the current study was to develop and validate a finite element (FE) pedestrian model with high computational efficiency and stability using a novel modeling approach. METHODS: Firstly, a novel modeling approach of using hollow structures (HS) to simulate the mechanical properties of soft tissues under impact loading was proposed and evaluated. Then, an FE pedestrian model was developed, employing this modeling approach based on the Total Human Model for Safety (THUMS) pedestrian model, named as THUMS-HS model. Finally, the biofidelity of the THUMS-HS model was validated against cadaver test data at both segment and full-body level. RESULTS: The results show that the proposed hollow structures can simulate the mechanical properties of soft tissues and the predictions of the THUMS-HS model show good agreement with the cadaver test data under impact loading. Simulations also prove that the THUMS-HS model has high computational efficiency and stability. CONCLUSIONS: The proposed modeling approach of using hollow structures to simulate the mechanical properties of soft tissues is plausible and the THUMS-HS model could be used as a valid, efficient and robust numerical tool for analysis of pedestrian safety in vehicle collisions.


Subject(s)
Pedestrians , Accidents, Traffic/prevention & control , Biomechanical Phenomena , Finite Element Analysis , Human Body , Humans , Models, Biological
5.
Front Bioeng Biotechnol ; 9: 768994, 2021.
Article in English | MEDLINE | ID: mdl-34993187

ABSTRACT

Head-to-vehicle contact boundary condition and criteria and corresponding thresholds of head injuries are crucial in evaluation of vehicle safety performance for pedestrian protection, which need a constantly updated understanding of pedestrian head kinematic response and injury risk in real-world collisions. Thus, the purpose of the current study is to investigate the characteristics of pedestrian head-to-vehicle contact boundary condition and pedestrian AIS3+ (Abbreviated Injury Scale) head injury risk as functions of kinematic-based criteria, including HIC (Head Injury Criterion), HIP (Head Impact Power), GAMBIT (Generalized Acceleration Model for Brain Injury Threshold), RIC (Rotational Injury Criterion), and BrIC (Brain Injury Criteria), in real-world collisions. To achieve this, 57 vehicle-to-pedestrian collision cases were employed, and a multi-body modeling approach was applied to reconstruct pedestrian kinematics in these real-world collisions. The results show that head-to-windscreen contacts are dominant in pedestrian collisions of the analysis sample and that head WAD (Wrap Around Distance) floats from 1.5 to 2.3 m, with a mean value of 1.84 m; 80% of cases have a head linear contact velocity below 45 km/h or an angular contact velocity less than 40 rad/s; pedestrian head linear contact velocity is on average 83 ± 23% of the vehicle impact velocity, while the head angular contact velocity (in rad/s) is on average 75 ± 25% of the vehicle impact velocity in km/h; 77% of cases have a head contact time in the range 50-140 ms, and negative and positive linear correlations are observed for the relationships between pedestrian head contact time and WAD/height ratio and vehicle impact velocity, respectively; 70% of cases have a head contact angle floating from 40° to 70°, with an average value of 53°; the pedestrian head contact angles on windscreens (average = 48°) are significantly lower than those on bonnets (average = 60°); the predicted thresholds of HIC, HIP, GAMBIT, RIC, BrIC2011, and BrIC2013 for a 50% probability of AIS3+ head injury risk are 1,300, 60 kW, 0.74, 1,470 × 104, 0.56, and 0.57, respectively. The findings of the current work could provide realistic reference for evaluation of vehicle safety performance focusing on pedestrian protection.

6.
Acta Bioeng Biomech ; 23(4): 33-41, 2021.
Article in English | MEDLINE | ID: mdl-37341103

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the capability of a detailed FE human body lower limb mode, called HALL (Human Active Lower Limb) model, in predicting real world pedestrian injuries and to investigate injury mechanism of pedestrian lower limb in vehicle collisions. METHODS: Two real world vehicle-to-pedestrian crashes with detailed information were selected. Then, a pedestrian model combining the HALL model and the upper body of the 50th% Chinese dummy model and vehicle front models were developed to reconstruct the selected real world crashes, and the predictions of the simulations were analyzed together with observations from the accident data. RESULTS: The results show that the predictions of the HALL model for pedestrian lower limb long bone fractures match well with the observation from hospital data of the real world accidents, and the predicted thresholds of bending moment for tibia and femur fracture are close to the average values calculated from cadaver test data. Analysis of injury mechanism of pedestrian lower limb in collisions indicates that the relatively sharper bumper of minivan type vehicles can produce concentrated loading to the lower leg and a high risk of tibia/fibula fracture, while the relatively sharper and lower bonnet leading edge may cause concentrate loading to the thigh and high femur fracture risk. CONCLUSIONS: The findings imply that the HALL model could be used as an effective tool for predicting pedestrian lower limb injuries in vehicle collisions and improvements to the minivan bumper and sedan bonnet leading edge should be concerned further in vehicle design.

7.
J Biomech ; 109: 109916, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32807316

ABSTRACT

Virtual finite element human body models have been widely used in biomedical engineering, traffic safety injury analysis, etc. Soft tissue modeling like skeletal muscle accounts for a large portion of a human body model establishment, and its modeling method is not enough explored. The present study aims to investigate the compressive properties of skeletal muscles due to different species, loading rates and fiber orientations, in order to obtain available parameters of specific material laws as references for building or improving the human body model concerning both modeling accuracy and computational cost. A series of compressive experiments of skeletal muscles were implemented for human gastrocnemius muscle, bovine and porcine hind leg muscle. To avoid long-time preservation effects, all experimental tests were carried out in 24 h after that the samples were harvested. Considering computational cost and generally used in the previous human body models, one-order hyperelastic Ogden model and three-term simplified viscoelastic quasi-linear viscoelastic (QLV) were selected for numerical analysis. Inverse finite element analysis was employed to obtain corresponding material parameters. With good fitting records, the simulation results presented available material parameters for human body model establishment, and also indicated significant differences of muscle compressive properties due to species, loading rates and fiber orientations. When considering one-order Ogden law, it is worthy of noting that the inversed material parameters of the porcine muscles are similar to those of the human gastrocnemius regardless of fiber orientations. In conclusion, the obtained material parameters in the present study can be references for global human body and body segment modeling.


Subject(s)
Models, Biological , Muscle, Skeletal , Animals , Biomechanical Phenomena , Cattle , Computer Simulation , Elasticity , Finite Element Analysis , Humans , Stress, Mechanical , Swine
8.
Appl Bionics Biomech ; 2020: 2348064, 2020.
Article in English | MEDLINE | ID: mdl-32148559

ABSTRACT

The mechanism of Behind Helmet Blunt Trauma (BHBT) caused by a high-speed bullet is difficult to understand. At present, there is still a lack of corresponding parameters and test methods to evaluate this damage effectively. The purpose of the current study is therefore to investigate the response of the human skull and brain tissue under the loading of a bullet impacting a bullet-proof helmet, with the effects of impact direction, impact speed, and impactor structure being considered. A human brain finite element model which can accurately reconstruct the anatomical structures of the scalp, skull, brain tissue, etc., and can realistically reflect the biomechanical response of the brain under high impact speed was employed in this study. The responses of Back Face Deformation (BFD), brain displacement, skull stress, and dura mater pressure were extracted from simulations as the parameters reflecting BHBT risk, and the relationships between BHBT and bullet-proof equipment structure and performance were also investigated. The simulation results show that the frontal impact of the skull produces the largest amount of BFD, and when the impact directions are from the side, the skull stress is about twice higher than other directions. As the impact velocity increases, BFD, brain displacement, skull stress, and dura mater pressure increase. The brain damage caused by different structural bullet bodies is different under the condition of the same kinetic energy. The skull stress caused by the handgun bullet is the largest. The findings indicate that when a bullet impacts on the bullet-proof helmet, it has a higher probability of causing brain displacement and intracranial high pressure. The research results can provide a reference value for helmet optimization design and antielasticity evaluation and provide the theoretical basis for protection and rescue.

9.
Article in English | MEDLINE | ID: mdl-31941003

ABSTRACT

It has been challenging to efficiently and accurately reproduce pedestrian head/brain injury, which is one of the most important causes of pedestrian deaths in road traffic accidents, due to the limitations of existing pedestrian computational models, and the complexity of accidents. In this paper, a new coupled pedestrian computational biomechanics model (CPCBM) for head safety study is established via coupling two existing commercial pedestrian models. The head-neck complex of the CPCBM is from the Total Human Model for Safety (THUMS, Toyota Central R&D Laboratories, Nagakute, Japan) (Version 4.01) finite element model and the rest of the parts of the body are from the Netherlands Organisation for Applied Scientific Research (TNO, The Hague, The Netherlands) (Version 7.5) multibody model. The CPCBM was validated in terms of head kinematics and injury by reproducing three cadaveric tests published in the literature, and a correlation and analysis (CORA) objective rating tool was applied to evaluate the correlation of the related signals between the predictions using the CPCBM and the test results. The results show that the CPCBM head center of gravity (COG) trajectories in the impact direction (YOZ plane) strongly agree with the experimental results (CORA ratings: Y = 0.99 ± 0.01; Z = 0.98 ± 0.01); the head COG velocity with respect to the test vehicle correlates well with the test data (CORA ratings: 0.85 ± 0.05); however, the correlation of the acceleration is less strong (CORA ratings: 0.77 ± 0.06). No significant differences in the behavior in predicting the head kinematics and injuries of the tested subjects were observed between the TNO model and CPCBM. Furthermore, the application of the CPCBM leads to substantial reduction of the computation time cost in reproducing the pedestrian head tissue level injuries, compared to the full-scale finite element model, which suggests that the CPCBM could present an efficient tool for pedestrian brain-injury research.


Subject(s)
Accidents, Traffic , Automobiles , Brain Injuries/physiopathology , Craniocerebral Trauma/physiopathology , Pedestrians , Aged , Biomechanical Phenomena , Finite Element Analysis , Humans , Male , Middle Aged , Models, Biological
10.
Acta Bioeng Biomech ; 22(3): 117-129, 2020.
Article in English | MEDLINE | ID: mdl-33518731

ABSTRACT

PURPOSE: The purpose of the current study was to investigate whether an isolated human body lower limb FE model could predict leg kinematics and biomechanical response of a full body Chinese pedestrian model in vehicle collisions. METHODS: A human body lower limb FE model representing midsize Chinese adult male anthropometry was employed with different upper body weight attachments being evaluated by comparing the predictions to those of a full body pedestrian model in vehicle-to-pedestrian collisions considering different front-end shapes. RESULTS: The results indicate that upper body mass has a significant influence on pedestrian lower limb injury risk, the effect varies from vehicle front-end shape and is more remarkable to the femur and knee ligaments than to the tibia. In particular, the upper body mass can generally increase femur and knee ligaments injury risk, but has no obvious effect on the injury risk of tibia. The results also show that a higher attached buttock mass is needed for isolated pedestrian lower limb model for impacts with vehicles of higher bonnet leading edge. CONCLUSIONS: The findings of this study may suggest that it is necessary to consider vehicle shape variation in assessment of vehicle pedestrian protection performance and leg-form impactors with adaptive upper body mass should be used for vehicles with different front-end shapes, and the use of regional leg-form impactor modeling the local anthropometry to evaluate the actual lower limb injury of pedestrians in different countries and regions.


Subject(s)
Accidents, Traffic , Asian People , Human Body , Leg/physiopathology , Models, Biological , Pedestrians , Biomechanical Phenomena , Femur/physiopathology , Finite Element Analysis , Humans , Knee/physiopathology , Leg Injuries/physiopathology , Ligaments/physiopathology , Tibia/physiopathology
11.
Traffic Inj Prev ; 21(1): 102-107, 2020.
Article in English | MEDLINE | ID: mdl-31770038

ABSTRACT

Objectives: Accident reconstruction using computational biomechanics models plays an important role in research and prevention of human brain injury caused by car-to-pedestrian impacts. Finite element (FE) "head-only" models (that represent only the pedestrian head and brain) used in such reconstruction do not account for the influence of the rest of the pedestrian body on the head kinematics due to the accident and, consequently, on the brain injury risk prediction. Application of full-scale FE pedestrian models, on the other hand, is limited by their high computational cost and, more importantly, by the time-consuming preprocessing when repositioning the model to represent the pedestrian posture and location in relation to the impacting car. The objective of this study is to propose a computational biomechanics modeling approach to overcome these challenges.Methods: First, we couple a validated commercial FE head-neck complex model and a multibody (MB) pedestrian model. This coupled FE-MB model is evaluated through application in reconstruction of a real-world car-to-pedestrian impact accident and comparison of the pedestrian kinematics predicted using this model with the results obtained from the established full-scale MB pedestrian model. Finally, we compare the results obtained using the coupled FE-MB model proposed in this study and FE head-only model in terms of both the head kinematics and brain injury risk predicted using the two models.Results: The results of analysis of head injury criterion (HIC15) and brain deformation-based injury criteria (instantaneous value of cumulative strain damage measure iCSDM and maximum shear strain of the brain tissue) indicate substantial differences in the head kinematics and brain injury risk predicted using the two models. The coupled FE-MB model predicts a high risk of the brain injury which is consistent with the database record of the analyzed accident, in particular for the impact between the pedestrian head and road surface. In contrast, the head-only model did not predict that such impact can occur. The FE head head-only model with rigid skull and prescribed acceleration-time history of the head center of gravity determined from accident reconstruction using the purely MB pedestrian model, predicted appreciably lower iCSDM than the coupled FE-MB model that accounts for skull deformations using the linear elastic-plastic material model.Conclusions: This study suggests that the FE head-only models may be deficient for car-to-pedestrian impact accident reconstruction and estimation of risk of the pedestrian brain injury. In particular, this applies to the models that simplify the pedestrian skull as a rigid body.


Subject(s)
Accidents, Traffic/statistics & numerical data , Brain Injuries/epidemiology , Pedestrians , Biomechanical Phenomena , Finite Element Analysis , Head/physiology , Humans , Male , Middle Aged , Reproducibility of Results
12.
Acta Bioeng Biomech ; 21(2): 21-30, 2019.
Article in English | MEDLINE | ID: mdl-31741474

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the capability of the Total Human Model for Safety (THUMS) - pedestrian model in predicting pedestrian injuries, and to investigate pedestrian injury mechanisms in minivan collisions via numerical reconstruction of a real world minivan-to-pedestrian impact case. METHODS: A typical minivan-to-pedestrian collision case was selected from the In-depth Investigation of car Accidents in Changsha (IVAC) database. The THUMS middle-size adult male FE model and a minivan front FE model were then employed to represent the case participants and injuries to the pedestrian's lower limb, thorax and head were reconstructed. Finally, the capability of the THUMS model in predicting pedestrian injuries and pedestrian injury mechanisms in minivan collisions were analyzed through comparisons between predictions and the accident data. RESULTS: The results show that the THUMS has a good capability in predicting pedestrian thorax injuries, but a lower prediction of leg bending moment and brain strain. The extra bull bar concentrates crash load to pedestrian's leg and raises tibia/fibula fracture risk, thorax injuries in the struck side are mainly from direct contact at the lower chest level, lung injury in the non-struck side could be caused by inertia force from the heart. Rotational acceleration shows good match with brain strain and could be the key mechanism for concussion. CONCLUSIONS: The results suggest that further improvement in biofidelity of the THUMS model is still needed. The findings also offer basic understanding on pedestrian injury mechanisms in minivan collisions.


Subject(s)
Accidents, Traffic , Models, Theoretical , Motor Vehicles , Pedestrians , Wounds and Injuries/etiology , Computer Simulation , Finite Element Analysis , Fractures, Bone/etiology , Humans , Leg/pathology , Risk Factors
13.
Appl Bionics Biomech ; 2019: 4930803, 2019.
Article in English | MEDLINE | ID: mdl-31428191

ABSTRACT

Head injuries are often fatal or of sufficient severity to pedestrians in vehicle crashes. Finite element (FE) simulation provides an effective approach to understand pedestrian head injury mechanisms in vehicle crashes. However, studies of pedestrian head safety considering full human body response and a broad range of impact scenarios are still scarce due to the long computing time of the current FE human body models in expensive simulations. Therefore, the purpose of this study is to develop and validate a computationally efficient FE pedestrian model for future studies of pedestrian head safety. Firstly, a FE pedestrian model with a relatively small number of elements (432,694 elements) was developed in the current study. This pedestrian model was then validated at both segment and full body levels against cadaver test data. The simulation results suggest that the responses of the knee, pelvis, thorax, and shoulder in the pedestrian model are generally within the boundaries of cadaver test corridors under lateral impact loading. The upper body (head, T1, and T8) trajectories show good agreements with the cadaver data in vehicle-to-pedestrian impact configuration. Overall, the FE pedestrian model developed in the current study could be useful as a valuable tool for a pedestrian head safety study.

14.
Accid Anal Prev ; 129: 362-366, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31130209

ABSTRACT

Head injury is one of the most common injury types in vehicle-to-pedestrian collisions, which leads to death and long-term disabilities. However, detailed analysis of pedestrian head injuries in real world collisions is scarce. Thus the current study used two samples of 120 cases and 184 cases extracted from 1060 pedestrian collision cases captured during 2000-2015 from the GIDAS (German In-Depth-Accident Study) database to investigate the detailed characteristics of AIS2+ pedestrian head injuries. Firstly, the interrelationship between different head injury types (skull fracture, focal brain injury, concussion and diffuse axonal injury (DAI)) was analysed using the sample of 120 cases which each had at least one AIS2+ head injury. Then the influences of impact speed, pedestrian age and car front shape parameters on the injury risk of skull fracture, focal brain injury and concussion were assessed using the logistic regression method, based on the sample of 184 AIS1+ cases where the primary head contact location was within the windscreen glass area. The results show that: skull fractures and focal brain injuries dominate for AIS3+ head injuries and are generally associated with each other; concussion is the most important injury type for AIS2 head injuries and usually occurs in isolation. Further, for head impacts to the windscreen glass area a higher bonnet leading edge helps to reduce concussion odds, and none of the selected car front shape parameters are significant for the odds of skull fracture and focal brain injury, and vehicle impact speed and pedestrian age are insignificant for concussion. These detailed characteristics of pedestrian head injuries provide a basis for future pedestrian head injury prevention strategies with skull fractures and focal brain injuries being the most important injuries to address.


Subject(s)
Accidents, Traffic/statistics & numerical data , Craniocerebral Trauma/epidemiology , Pedestrians/statistics & numerical data , Adult , Brain Concussion/epidemiology , Databases, Factual , Diffuse Axonal Injury/epidemiology , Germany/epidemiology , Humans , Skull Fractures/epidemiology , Walking/injuries
15.
Appl Bionics Biomech ; 2018: 7350159, 2018.
Article in English | MEDLINE | ID: mdl-30250503

ABSTRACT

Thoracic injuries occur frequently in minivan-to-pedestrian impact accidents and can cause substantial fatalities. The present research work investigates the human thoracic responses and injury risks in minivan-to-pedestrian impacts, when changing the minivan front-end design and the impact velocity, by using computational biomechanics model. We employed three typical types of minivan model of different front-end designs that are quite popular in Chinese market and considered four impact velocities (20, 30, 40, and 50 km/h). The contact time of car to thorax region (CTCTR), thorax impact velocity, chest deformation, and thoracic injury risks were extracted for the investigation. The results indicate that the predicted pedestrian kinematics, injury responses, and thoracic injury risks are strongly affected by the variation of the minivan front-end design and impact velocity. The pedestrian thoracic injury risks increase with the increasing vehicle impact velocity. It is also revealed that the application of the extra front bumper is beneficial for reducing the thoracic injury risk, and a relatively flatter minivan front-end design gives rise to a higher thoracic injury risk. This study is expected to be served as theoretical references for pedestrian protection design of minivans.

16.
Accid Anal Prev ; 115: 143-150, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29571012

ABSTRACT

Subsystem impactor tests are the main approaches for evaluation of safety performance of vehicle front design for pedestrian protection in legislative regulations. However, the main aspects of vehicle safety for pedestrians are shape and stiffness, and though it is clear that subsystem impact tests encourage lower vehicle front stiffness, it is unclear whether they promote improved vehicle front shapes for pedestrian protection. The purpose of this paper is therefore to investigate the effects of European pedestrian safety regulations on passenger car front shape and pedestrian injury risk using recent German In-Depth Accident Study (GIDAS) pedestrian collision data and numerical simulations. Firstly, a sample of 579 pedestrian collision cases involving 190 different car models between 2000-2015 extracted from the GIDAS was used to compare front-end shapes of passenger cars manufactured before and after the legislative pedestrian safety regulations were introduced in Europe. The focus was on changes in passenger car front shape and differences in pedestrian AIS2+ (Abbreviated Injury Scale at least level 2) leg, pelvis/femur and head injury risk observed in collisions. Multi-body simulations were also used to assess changes in vehicle aggressivity due to the observed changes in vehicle shape. The results show that newer passenger cars tend to have a flatter and wider bumper, higher bonnet leading edge, shorter and steeper bonnet and a shallower windscreen. Both the collision data and the numerical simulations indicate that newer passenger car front bumper designs are significantly safer for pedestrians' legs. However, the results also show that the higher bonnet leading edge in newer passenger cars is poor for pedestrian pelvis/femur protection, even though newer cars show an obviously lower AIS2+ injury risk to younger pedestrians in collisions. Newer cars have a lower AIS2+ head injury risk for pedestrians in collisions, but the numerical analysis indicate that this is not likely due to shape changes in passenger car fronts. Overall, the introduction of pedestrian safety regulations has resulted in reductions in pedestrian injury risk, but further benefits would accrue from tests which promote a lower bonnet leading edge. The influence of vehicle shape on pedestrian head injury risk remains unclear.


Subject(s)
Accidents, Traffic , Automobiles/legislation & jurisprudence , Engineering , Pedestrians , Walking/injuries , Wounds and Injuries/prevention & control , Abbreviated Injury Scale , Craniocerebral Trauma/etiology , Craniocerebral Trauma/prevention & control , Equipment Design , Europe , Femur/injuries , Germany , Head , Humans , Leg , Pelvis/injuries , Risk Assessment , Safety , Wounds and Injuries/etiology
17.
Accid Anal Prev ; 110: 9-17, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29078073

ABSTRACT

Most pedestrians struck by vehicles receive injuries from contact with the vehicle and also from the subsequent ground contact. However, ground related pedestrian injuries have received little focus. This paper uses 1221 German pedestrian collision cases occurring between 2000 and 2015 to assess the distribution and risk factors for pedestrian ground related injuries. Results show that for MAIS 2, the ground accounted for 24% of cases, for MAIS 3 the ground accounted for 20% of cases and for MAIS 4-5, the ground accounted for 14% of cases. There were no AIS 6 ground related injuries, though there were several fatal cases where the ground was coded as the most serious injury. The head, thorax and spine dominate AIS 4-5 ground contact injuries. Vehicle impact speeds were higher for ground related AIS 4-5 compared to AIS 2 injury cases and the average impact speed for ground related injuries to the upper and lower extremities was lower than for body regions like head, thorax and spine. There was a significant age effect on pedestrian ground related injury outcome, with older pedestrians suffering more severe injuries and the median age for thorax injuries was higher than for all other body regions. There was no significant difference in the proportions of AIS 2+ head injuries produced by ground contact for more recent vehicles (model year since 2005) compared to older vehicles (model year before 2005). However, logistic regression analysis showed that the normalised bonnet leading-edge height is a risk factor for adult pedestrian AIS2+ ground related head injuries, and this provides empirical support for recent computational modelling predictions which implied a relationship between vehicle shape and pedestrian ground contact injuries. Considering the potential benefits of preventing pedestrian ground contact, for collisions below 40km/h two thirds of the injury costs would be eliminated if ground contact could be prevented, and even higher benefits are likely at lower speeds (20 and 30km/h). These data demonstrate the importance of ground related pedestrian injuries and show that vehicle shape influences pedestrian injury outcome in ground contact. The data therefore provides significant motivation for countermeasures to prevent or moderate pedestrian ground related injuries.


Subject(s)
Accidents, Traffic , Extremities , Head , Pedestrians , Spine , Thorax , Wounds and Injuries , Adolescent , Adult , Age Factors , Aged , Child , Costs and Cost Analysis , Craniocerebral Trauma , Female , Humans , Male , Motor Vehicles , Risk Factors , Thoracic Injuries , Walking
18.
Accid Anal Prev ; 101: 11-21, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28167420

ABSTRACT

Quantified relationships between passenger car front shape and pedestrian injury risk derived from accident data are sparse, especially considering the significant recent changes in car front design. The purpose of this paper is therefore to investigate the detailed effects of passenger car front shape on injury risk to a pedestrian's head, thorax, pelvis and leg in the event of a vehicle pedestrian impact. Firstly, an accident sample of 594 pedestrian cases captured during 2000-2015 from the German In-Depth Accident Study (GIDAS) database was employed. Multicollinearity diagnostic statistics were then used to detect multicollinearity between the predictors. Following this, logistic regression was applied to quantify the effects of passenger car front shape on injury risks while controlling for impact speed and pedestrian age. Results indicate that the bumper lower depth (BLD), bumper lower height (BLH), bumper upper height (BUH) and normalised bumper lower/upper height (NBLH/NBUH) are statistically significant for AIS2+ leg injury risk. The normalised bonnet leading edge height (NBLEH) has a statistically significant influence on AIS2+ femur/pelvis injury occurrence. The passenger car front shape did not show statistical significance for AIS3+ thorax and head injuries. The impact speed and pedestrian age are generally significant factors influencing AIS2+ leg and pelvis injuries, and AIS3+ thorax and head injuries. However, when head impacts are fixed on the central windscreen region both pedestrian age and impact speed are not statistically significant for AIS3+ head injury. For quantified effects, when controlling for speed, age and BUH, an average 7% and 6% increase in AIS2+ leg injury odds was observed for every 1cm increase in BLD and BLH respectively; 1cm increase in BUH results in a 7% decrease in AIS2+ leg injury odds when the BLD or BLH are fixed respectively (again controlling for impact speed and pedestrian age); the average AIS2+ femur/pelvis injury odds increase by 74% for a 10% increase in NBLEH. These findings suggest that passenger car bumpers should support the lower leg with a low and flat lower bumper and even contact up to the femur area with a high upper bumper which extends above the knee to protect the pedestrian's leg. A low passenger car bonnet leading edge helps to reduce femur/pelvis injury risk. The passenger car front shape parameters are less influential than impact speed and pedestrian age for pedestrian injury risk.


Subject(s)
Accidents, Traffic/statistics & numerical data , Automobiles , Craniocerebral Trauma/epidemiology , Leg Injuries/epidemiology , Pedestrians , Thoracic Injuries/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Databases, Factual , Female , Germany/epidemiology , Humans , Logistic Models , Male , Middle Aged , Pelvis/injuries , Risk Factors , Young Adult
19.
Accid Anal Prev ; 100: 97-110, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28129577

ABSTRACT

Vehicle front shape has a significant influence on pedestrian injuries and the optimal design for overall pedestrian protection remains an elusive goal, especially considering the variability of vehicle-to-pedestrian accident scenarios. Therefore this study aims to develop and evaluate an efficient framework for vehicle front shape optimization for pedestrian protection accounting for the broad range of real world impact scenarios and their distributions in recent accident data. Firstly, a framework for vehicle front shape optimization for pedestrian protection was developed based on coupling of multi-body simulations and a genetic algorithm. This framework was then applied for optimizing passenger car front shape for pedestrian protection, and its predictions were evaluated using accident data and kinematic analyses. The results indicate that the optimization shows a good convergence and predictions of the optimization framework are corroborated when compared to the available accident data, and the optimization framework can distinguish 'good' and 'poor' vehicle front shapes for pedestrian safety. Thus, it is feasible and reliable to use the optimization framework for vehicle front shape optimization for reducing overall pedestrian injury risk. The results also show the importance of considering the broad range of impact scenarios in vehicle front shape optimization. A safe passenger car for overall pedestrian protection should have a wide and flat bumper (covering pedestrians' legs from the lower leg up to the shaft of the upper leg with generally even contacts), a bonnet leading edge height around 750mm, a short bonnet (<800mm) with a shallow or steep angle (either >17° or <12°) and a shallow windscreen (≤30°). Sensitivity studies based on simulations at the population level indicate that the demands for a safe passenger car front shape for head and leg protection are generally consistent, but partially conflict with pelvis protection. In particular, both head and leg injury risk increase with increasing bumper lower height and depth, and decrease with increasing bonnet leading edge height, while pelvis injury risk increases with increasing bonnet leading edge height. However, the effects of bonnet leading edge height and windscreen design on head injury risk are complex and require further analysis.


Subject(s)
Accidents, Traffic/prevention & control , Motor Vehicles , Pedestrians , Safety Management/methods , Craniocerebral Trauma/prevention & control , Equipment Design , Humans , Walking/injuries
20.
Traffic Inj Prev ; 17(5): 515-23, 2016 07 03.
Article in English | MEDLINE | ID: mdl-26786188

ABSTRACT

OBJECTIVES: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians. METHODS: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization. RESULTS: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered. CONCLUSIONS: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.


Subject(s)
Accidents, Traffic/statistics & numerical data , Pedestrians/statistics & numerical data , User-Computer Interface , Walking/injuries , Wounds and Injuries/epidemiology , Databases, Factual , Forecasting , Humans , Motor Vehicles/standards , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...