Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 131(3): 492-508, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38264784

ABSTRACT

Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons.NEW & NOTEWORTHY Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.


Subject(s)
Neurons , Olfactory Bulb , Female , Male , Mice , Animals , Olfactory Bulb/physiology , Neurons/physiology , Action Potentials/physiology , Synapses/physiology , Odorants
2.
Dev Cogn Neurosci ; 63: 101284, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517139

ABSTRACT

Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Brain , Cognition , Connectome/methods , Language , Brain Mapping
3.
Hum Brain Mapp ; 44(8): 2993-3006, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36896755

ABSTRACT

Brain wiring redundancy counteracts aging-related cognitive decline by reserving additional communication channels as a neuroprotective mechanism. Such a mechanism plays a potentially important role in maintaining cognitive function during the early stages of neurodegenerative disorders such as Alzheimer's disease (AD). AD is characterized by severe cognitive decline and involves a long prodromal stage of mild cognitive impairment (MCI). Since MCI subjects are at high risk of converting to AD, identifying MCI individuals is essential for early intervention. To delineate the redundancy profile during AD progression and enable better MCI diagnosis, we define a metric that reflects redundant disjoint connections between brain regions and extract redundancy features in three high-order brain networks-medial frontal, frontoparietal, and default mode networks-based on dynamic functional connectivity (dFC) captured by resting-state functional magnetic resonance imaging (rs-fMRI). We show that redundancy increases significantly from normal control (NC) to MCI individuals and decreases slightly from MCI to AD individuals. We further demonstrate that statistical features of redundancy are highly discriminative and yield state-of-the-art accuracy of up to 96.8 ± 1.0% in support vector machine (SVM) classification between NC and MCI individuals. This study provides evidence supporting the notion that redundancy serves as a crucial neuroprotective mechanism in MCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods
4.
Med Image Anal ; 83: 102644, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36272236

ABSTRACT

This paper proposes a deep learning framework to encode subject-specific transformations between facial and bony shapes for orthognathic surgical planning. Our framework involves a bidirectional point-to-point convolutional network (P2P-Conv) to predict the transformations between facial and bony shapes. P2P-Conv is an extension of the state-of-the-art P2P-Net and leverages dynamic point-wise convolution (i.e., PointConv) to capture local-to-global spatial information. Data augmentation is carried out in the training of P2P-Conv with multiple point subsets from the facial and bony shapes. During inference, network outputs generated for multiple point subsets are combined into a dense transformation. Finally, non-rigid registration using the coherent point drift (CPD) algorithm is applied to generate surface meshes based on the predicted point sets. Experimental results on real-subject data demonstrate that our method substantially improves the prediction of facial and bony shapes over state-of-the-art methods.

5.
Front Hum Neurosci ; 16: 940842, 2022.
Article in English | MEDLINE | ID: mdl-36061504

ABSTRACT

As a newly emerging field, connectomics has greatly advanced our understanding of the wiring diagram and organizational features of the human brain. Generative modeling-based connectome analysis, in particular, plays a vital role in deciphering the neural mechanisms of cognitive functions in health and dysfunction in diseases. Here we review the foundation and development of major generative modeling approaches for functional magnetic resonance imaging (fMRI) and survey their applications to cognitive or clinical neuroscience problems. We argue that conventional structural and functional connectivity (FC) analysis alone is not sufficient to reveal the complex circuit interactions underlying observed neuroimaging data and should be supplemented with generative modeling-based effective connectivity and simulation, a fruitful practice that we term "mechanistic connectome." The transformation from descriptive connectome to mechanistic connectome will open up promising avenues to gain mechanistic insights into the delicate operating principles of the human brain and their potential impairments in diseases, which facilitates the development of effective personalized treatments to curb neurological and psychiatric disorders.

6.
J Neurosci ; 42(3): 377-389, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34789554

ABSTRACT

The functional connectome fingerprint is a cluster of individualized brain functional connectivity patterns that are capable of distinguishing one individual from others. Although its existence has been demonstrated in adolescents and adults, whether such individualized patterns exist during infancy is barely investigated despite its importance in identifying the origin of the intrinsic connectome patterns that potentially mirror distinct behavioral phenotypes. To fill this knowledge gap, capitalizing on a longitudinal high-resolution structural and resting-state functional MRI dataset with 104 human infants (53 females) with 806 longitudinal scans (age, 16-876 d) and infant-specific functional parcellation maps, we observe that the brain functional connectome fingerprint may exist since infancy and keeps stable over months during early brain development. Specifically, we achieve an ∼78% individual identification rate by using ∼5% selected functional connections, compared with the best identification rate of 60% without connection selection. The frontoparietal networks recognized as the most contributive networks in adult functional connectome fingerprinting retain their superiority in infants despite being widely acknowledged as rapidly developing systems during childhood. The existence and stability of the functional connectome fingerprint are further validated on adjacent age groups. Moreover, we show that the infant frontoparietal networks can reach similar accuracy in predicting individual early learning composite scores as the whole-brain connectome, again resembling the observations in adults and highlighting the relevance of functional connectome fingerprint to cognitive performance. For the first time, these results suggest that each individual may retain a unique and stable marker of functional connectome during early brain development.SIGNIFICANCE STATEMENT Functional connectome fingerprinting during infancy featuring rapid brain development remains almost uninvestigated even though it is essential for understanding the early individual-level intrinsic pattern of functional organization and its relationship with distinct behavioral phenotypes. With an infant-tailored functional connection selection and validation strategy, we strive to provide the delineation of the infant functional connectome fingerprint by examining its existence, stability, and relationship with early cognitive performance. We observe that the brain functional connectome fingerprint may exist since early infancy and remains stable over months during the first 2 years. The identified key contributive functional connections and networks for fingerprinting are also verified to be highly predictive for cognitive score prediction, which reveals the association between infant connectome fingerprint and cognitive performance.


Subject(s)
Brain/diagnostic imaging , Connectome , Nerve Net/diagnostic imaging , Brain Mapping , Child, Preschool , Female , Functional Neuroimaging , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male
7.
Neuroimage Clin ; 31: 102758, 2021.
Article in English | MEDLINE | ID: mdl-34284335

ABSTRACT

Major depressive disorder (MDD) represents a grand challenge to human health and society, but the underlying pathophysiological mechanisms remain elusive. Previous neuroimaging studies have suggested that MDD is associated with abnormal interactions and dynamics in two major neural systems including the default mode - salience (DMN-SAL) network and the executive - limbic (EXE-LIM) network, but it is not clear which network plays a central role and which network plays a subordinate role in MDD pathophysiology. To address this question, we refined a newly developed Multiscale Neural Model Inversion (MNMI) framework and applied it to test whether MDD is more affected by impaired circuit interactions in the DMN-SAL network or the EXE-LIM network. The model estimates the directed connection strengths between different neural populations both within and between brain regions based on resting-state fMRI data collected from normal healthy subjects and patients with MDD. Results show that MDD is primarily characterized by abnormal circuit interactions in the EXE-LIM network rather than the DMN-SAL network. Specifically, we observe reduced frontoparietal effective connectivity that potentially contributes to hypoactivity in the dorsolateral prefrontal cortex (dlPFC), and decreased intrinsic inhibition combined with increased excitation from the superior parietal cortex (SPC) that potentially lead to amygdala hyperactivity, together resulting in activation imbalance in the PFC-amygdala circuit that pervades in MDD. Moreover, the model reveals reduced PFC-to-hippocampus excitation but decreased SPC-to-thalamus inhibition in MDD population that potentially lead to hypoactivity in the hippocampus and hyperactivity in the thalamus, consistent with previous experimental data. Overall, our findings provide strong support for the long-standing limbic-cortical dysregulation model in major depression but also offer novel insights into the multiscale pathophysiology of this debilitating disease.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Parietal Lobe
8.
Hum Brain Mapp ; 41(4): 865-881, 2020 03.
Article in English | MEDLINE | ID: mdl-32026598

ABSTRACT

Major depressive disorder (MDD) is a serious mental illness characterized by dysfunctional connectivity among distributed brain regions. Previous connectome studies based on functional magnetic resonance imaging (fMRI) have focused primarily on undirected functional connectivity and existing directed effective connectivity (EC) studies concerned mostly task-based fMRI and incorporated only a few brain regions. To overcome these limitations and understand whether MDD is mediated by within-network or between-network connectivities, we applied spectral dynamic causal modeling to estimate EC of a large-scale network with 27 regions of interests from four distributed functional brain networks (default mode, executive control, salience, and limbic networks), based on large sample-size resting-state fMRI consisting of 100 healthy subjects and 100 individuals with first-episode drug-naive MDD. We applied a newly developed parametric empirical Bayes (PEB) framework to test specific hypotheses. We showed that MDD altered EC both within and between high-order functional networks. Specifically, MDD is associated with reduced excitatory connectivity mainly within the default mode network (DMN), and between the default mode and salience networks. In addition, the network-averaged inhibitory EC within the DMN was found to be significantly elevated in the MDD. The coexistence of the reduced excitatory but increased inhibitory causal connections within the DMNs may underlie disrupted self-recognition and emotional control in MDD. Overall, this study emphasizes that MDD could be associated with altered causal interactions among high-order brain functional networks.


Subject(s)
Connectome , Default Mode Network/physiopathology , Depressive Disorder, Major/physiopathology , Nerve Net/physiopathology , Neural Inhibition/physiology , Adult , Default Mode Network/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Emotional Regulation/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Models, Theoretical , Nerve Net/diagnostic imaging , Self Concept , Young Adult
9.
Article in English | MEDLINE | ID: mdl-34734214

ABSTRACT

Resting-state functional magnetic resonance imaging (rs-fMRI) studies have focused primarily on characterizing functional or effective connectivity of discrete brain regions. A major drawback of this approach is that it does not provide a mechanistic understanding of brain cognitive function or dysfunction at cellular and circuit levels. To overcome this limitation, we combined the methods of computational neuroscience with traditional macroscale connectomic analysis and developed a Multiscale Neural Model Inversion (MNMI) framework that links microscale circuit interaction with macroscale network dynamics and estimates both local coupling and inter-regional connections via stochastic optimization based on blood oxygen-level dependent (BOLD) rs-fMRI. We applied this method to the rs-fMRI data of 66 normal healthy subjects and 66 individuals with major depressive disorder (MDD) to identify potential biomarkers at both local circuit and global network level. Results suggest that the recurrent excitation and inhibition within the dorsal lateral prefrontal cortex (dlPFC) might be disrupted in MDD, consistent with the commonly accepted hypothetical model of MDD. In addition, recurrent excitation in the thalamus was found to be abnormally elevated, which may be responsible to abnormal thalamocortical oscillations often observed in MDD. Overall, our modeling approach holds the promise to overcome the limitation of traditional large-scale connectome modeling by providing hidden mechanistic insights into neuroanatomy, circuit dynamics and pathophysiology.

10.
J Neural Eng ; 16(1): 016013, 2019 02.
Article in English | MEDLINE | ID: mdl-30524080

ABSTRACT

OBJECTIVE: Rhythmic brain stimulation has emerged as a powerful tool to modulate cognition and to target pathological oscillations related to neurological and psychiatric disorders. However, we lack a systematic understanding of how periodic stimulation interacts with endogenous neural activity as a function of the brain state and target. APPROACH: To address this critical issue, we applied periodic stimulation to a unified biophysical thalamic network model that generates multiple distinct oscillations, and examined thoroughly the impact of rhythmic stimulation on different oscillatory states. MAIN RESULTS: We found that rhythmic perturbation induces four basic response mechanisms: entrainment, acceleration, resonance and suppression. Importantly, the appearance and expression of these mechanisms depend highly on the intrinsic cellular dynamics in each state. Specifically, the low-threshold bursting of thalamocortical cells (TCs) in delta (δ) oscillation renders the network relatively insensitive to entrainment; the high-threshold bursting of TCs in alpha (α) oscillation leads to widespread oscillation suppression while the tonic spiking of TC cells in gamma (γ) oscillation results in prominent entrainment and resonance. In addition, we observed entrainment discontinuity during α oscillation that is mediated by firing pattern switching of high-threshold bursting TC cells. Furthermore, we demonstrate that direct excitatory stimulation of the lateral geniculate nucleus (LGN) entrains thalamic oscillations via an asymmetric Arnold tongue that favors higher frequency entrainment and resonance, while stimulation of the inhibitory circuit, the reticular nucleus, induces much weaker and more symmetric entrainment and resonance. These results support the notion that rhythmic stimulation engages brain oscillations in a state- and target-dependent manner. SIGNIFICANCE: Overall, our study provides, for the first time, insights into how the biophysics of thalamic oscillations guide the emergence of complex, state-dependent mechanisms of target engagement, which can be leveraged for the future rational design of novel therapeutic stimulation modalities.


Subject(s)
Action Potentials/physiology , Brain Waves/physiology , Neural Networks, Computer , Neurons/physiology , Thalamus/cytology , Thalamus/physiology
11.
Methods Mol Biol ; 1820: 265-288, 2018.
Article in English | MEDLINE | ID: mdl-29884952

ABSTRACT

Generative models are computational models designed to generate appropriate values for all of their embedded variables, thereby simulating the response properties of a complex system based on the coordinated interactions of a multitude of physical mechanisms. In systems neuroscience, generative models are generally biophysically based compartmental models of neurons and networks that are explicitly multiscale, being constrained by experimental data at multiple levels of organization from cellular membrane properties to large-scale network dynamics. As such, they are able to explain the origins of emergent properties in complex systems, and serve as tests of sufficiency and as quantitative instantiations of working hypotheses that may be too complex to simply intuit. Moreover, when adequately constrained, generative biophysical models are able to predict novel experimental outcomes, and consequently are powerful tools for experimental design. We here outline a general strategy for the iterative design and implementation of generative, multiscale biophysical models of neural systems. We illustrate this process using our ongoing, iteratively developing model of the mammalian olfactory bulb. Because the olfactory bulb exhibits diverse and interesting properties at multiple scales of organization, it is an attractive system in which to illustrate the value of generative modeling across scales.


Subject(s)
Models, Neurological , Nerve Net/physiology , Olfactory Bulb/physiology , Olfactory Receptor Neurons/physiology , Smell/physiology , Animals , Biophysics , Humans , Nerve Net/cytology , Olfactory Bulb/cytology , Olfactory Receptor Neurons/cytology
12.
PLoS Comput Biol ; 13(11): e1005760, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29140973

ABSTRACT

The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity.


Subject(s)
Gamma Rhythm/physiology , Models, Neurological , Olfactory Bulb/physiology , Action Potentials , Animals , Computational Biology , Rats
13.
PLoS Comput Biol ; 13(10): e1005797, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29073146

ABSTRACT

The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.


Subject(s)
Acetylcholine/metabolism , Biological Clocks/physiology , Models, Neurological , Nerve Net/physiology , Neurotransmitter Agents/metabolism , Norepinephrine/metabolism , Thalamus/physiology , Computer Simulation , Deep Brain Stimulation/methods , Feedback, Physiological/physiology , Humans , Oscillometry/methods , Synaptic Transmission/physiology
14.
J Neurophysiol ; 114(6): 3177-200, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26334007

ABSTRACT

Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.


Subject(s)
Acetylcholine/pharmacology , Adrenergic Neurons/physiology , Cholinergic Neurons/physiology , Models, Neurological , Norepinephrine/pharmacology , Olfactory Bulb/physiology , Action Potentials , Adrenergic Neurons/drug effects , Adrenergic Neurons/metabolism , Animals , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Membrane Potentials , Mice , Olfactory Bulb/cytology , Rats
15.
Article in English | MEDLINE | ID: mdl-23637658

ABSTRACT

Olfactory bulb (OB) periglomerular (PG) cells are heterogeneous with respect to several features, including morphology, connectivity, patterns of protein expression, and electrophysiological properties. However, these features rarely correlate with one another, suggesting that the differentiating properties of PG cells may arise from multiple independent adaptive variables rather than representing discrete cell classes. We use computational modeling to assess this hypothesis with respect to electrophysiological properties. Specifically, we show that the heterogeneous electrophysiological properties demonstrated in PG cell recordings can be explained solely by differences in the relative expression levels of ion channel species in the cell, without recourse to modifying channel kinetic properties themselves. This PG cell model can therefore be used as the basis for diverse cellular and network-level analyses of OB computations. Moreover, this simple basis for heterogeneity contributes to an emerging hypothesis that glomerular-layer interneurons may be better described as a single population expressing distributions of partially independent, potentially plastic properties, rather than as a set of discrete cell classes.

16.
J Neurosci ; 33(7): 3037-58, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23407960

ABSTRACT

Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning, and short-term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but it has little effect on mitral cell firing rates and hence does not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.


Subject(s)
Biophysical Phenomena/physiology , Models, Neurological , Olfactory Bulb/physiology , Parasympathetic Nervous System/physiology , Algorithms , Animals , Biophysics , Calcium Signaling/physiology , Cell Membrane/physiology , Computer Simulation , Cytoplasmic Granules/physiology , Kinetics , Membrane Potentials/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Conduction/physiology , Neurons/physiology , Odorants , Olfactory Bulb/cytology , Rats , Receptors, Muscarinic/physiology , Receptors, Nicotinic/physiology , Reproducibility of Results
17.
Learn Mem ; 18(4): 226-40, 2011.
Article in English | MEDLINE | ID: mdl-21436395

ABSTRACT

Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce neurons to BLA inputs. These effects were hypothesized to result from the activation of ITC cells projecting to Ce. However, ITC cells inhibit each other, leading to the question of how IL inputs could overcome the inter-ITC inhibition to regulate the responses of Ce neurons to aversive conditioned stimuli (CSs). To investigate this, we first developed a compartmental model of a single ITC cell that could reproduce their bistable electroresponsive properties, as observed experimentally. Next, we generated an ITC network that implemented the experimentally observed short-term synaptic plasticity of inhibitory inter-ITC connections. Model experiments showed that strongly adaptive CS-related BLA inputs elicited persistent responses in ITC cells despite the presence of inhibitory interconnections. The sustained CS-evoked activity of ITC cells resulted from an unusual slowly deinactivating K(+) current. Finally, over a wide range of stimulation strengths, brief IL activation caused a marked increase in the firing rate of ITC neurons, leading to a persistent decrease in Ce output, despite inter-ITC inhibition. Simulations revealed that this effect depended on the bistable properties and synaptic heterogeneity of ITC neurons. These results support the notion that IL inputs are in a strategic position to control extinction of conditioned fear via the activation of ITC neurons.


Subject(s)
Amygdala/cytology , Biophysics , Models, Neurological , Neurons/physiology , Animals , Calcium/metabolism , Neural Pathways/physiology , Nonlinear Dynamics , Presynaptic Terminals/physiology , Synapses/physiology
18.
J Neurophysiol ; 101(3): 1629-46, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19036872

ABSTRACT

The basolateral amygdala plays an important role in the acquisition and expression of both fear conditioning and fear extinction. To understand how a single structure could encode these "opposite" memories, we developed a biophysical network model of the lateral amygdala (LA) neurons during auditory fear conditioning and extinction. Membrane channel properties were selected to match waveforms and firing properties of pyramidal cells and interneurons in LA, from published in vitro studies. Hebbian plasticity was implemented in excitatory AMPA and inhibitory GABA(A) receptor-mediated synapses to model learning. The occurrence of synaptic potentiation versus depression was determined by intracellular calcium levels, according to the calcium control hypothesis. The model was able to replicate conditioning- and extinction-induced changes in tone responses of LA neurons in behaving rats. Our main finding is that LA activity during both acquisition and extinction can be controlled by a balance between pyramidal cell and interneuron activations. Extinction training depressed conditioned synapses and also potentiated local interneurons, thereby inhibiting the responses of pyramidal cells to auditory input. Both long-term depression and potentiation of inhibition were required to initiate and maintain extinction. The model provides insights into the sites of plasticity in conditioning and extinction, the mechanism of spontaneous recovery, and the role of amygdala NMDA receptors in extinction learning.


Subject(s)
Amygdala/cytology , Conditioning, Psychological , Extinction, Psychological/physiology , Fear , Neural Networks, Computer , Neurons/physiology , Action Potentials/physiology , Animals , Models, Neurological , Neurons/cytology , Synapses/physiology
19.
IEEE Trans Vis Comput Graph ; 14(5): 1067-80, 2008.
Article in English | MEDLINE | ID: mdl-18599918

ABSTRACT

We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme the surface and its associated flow are segmented into overlapping patches which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection-Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into GPU flow visualization techniques for interactive performance.


Subject(s)
Algorithms , Computer Graphics , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Theoretical , Rheology/methods
20.
IEEE Trans Vis Comput Graph ; 10(4): 434-45, 2004.
Article in English | MEDLINE | ID: mdl-18579971

ABSTRACT

In this paper, we present an interactive texture-based algorithm for visualizing three-dimensional steady and unsteady vector fields. The goal of the algorithm is to provide a general volume rendering framework allowing the user to compute three-dimensional flow textures interactively and to modify the appearance of the visualization on the fly. To achieve our goal, we decouple the visualization pipeline into two disjoint stages. First, flow lines are generated from the 3D vector data. Various geometric properties of the flow paths are extracted and converted into a volumetric form using a hardware-assisted slice sweeping algorithm. In the second phase of the algorithm, the attributes stored in the volume are used as texture coordinates to look up an appearance texture to generate both informative and aesthetic representations of the vector field. Our algorithm allows the user to interactively navigate through different regions of interest in the underlying field and experiment with various appearance textures. With our algorithm, visualizations with enhanced structural perception using various visual cues can be rendered in real time. A myriad of existing geometry-based and texture-based visualization techniques can also be emulated.


Subject(s)
Algorithms , Computer Graphics , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , User-Computer Interface , Computer Simulation , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...