Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(10): e0292004, 2023.
Article in English | MEDLINE | ID: mdl-37812633

ABSTRACT

Using information technology to extract emergency decision-making knowledge from emergency plan documents is an essential means to enhance the efficiency and capacity of emergency management. To address the problems of numerous terminologies and complex relationships faced by emergency knowledge extraction of water diversion project, a multi-feature graph convolutional network (PTM-MFGCN) based on pre-trained model is proposed. Initially, through the utilization of random masking of domain-specific terminologies during pre-training, the model's comprehension of the meaning and application of such terminologies within specific fields is enhanced, thereby augmenting the network's proficiency in extracting professional terminologies. Furthermore, by introducing a multi-feature adjacency matrix to capture a broader range of neighboring node information, thereby enhancing the network's ability to handle complex relationships. Lastly, we utilize the PTM-MFGCN to achieve the extraction of emergency entity relationships in water diversion project, thus constructing a knowledge graph for water diversion emergency management. The experimental results demonstrate that PTM-MFGCN exhibits improvements of 2.84% in accuracy, 4.87% in recall, and 5.18% in F1 score, compared to the baseline model. Relevant studies can effectively enhance the efficiency and capability of emergency management, mitigating the impact of unforeseen events on engineering safety.


Subject(s)
Engineering , Information Science , Information Technology , Water
2.
Chin Med Sci J ; 31(3): 142-8, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27733220

ABSTRACT

Objective To investigate the short- and long-term therapeutic efficacies of intravenous trans- plantation of bone marrow stem cells (MSCs) in rats with experimental myocardial infarction by meta- analysis. Methods Randomized controlled trials were systematically searched from PubMed, Science Citation Index (SCI), Chinese journal full-text database (CJFD) up to December 2014. While the experimental groups (MSCs groups) were injected MSCs intravenously, the control groups were injected Delubecco's minimum essential medium (DMEM) or phosphate buffered saline (PBS). Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs. Weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated for outcome parameters including ejection fraction (EF) and fractional shortening (FS), which were measured by echocardiogram after intravenous injection and analyzed by RevMan 5.2 and STATA 12.0. Results Data from 9 studies (190 rats) were included in the meta-analysis. As compared to the control groups, the cardiac function of the experimental groups were not improved at day 7 (EF: WMD=0.08, 95%CI -1.32 to 1.16, P>0.01; FS: WMD=-0.12, 95%CI -0.90 to 0.65, P>0.01) until at day 14 after MSCs' transplantation (EF: WMD=10.79, 95%CI 9.16 to 12.42, P<0.01; FS: WMD=11.34, 95%CI 10.44 to 12.23, P<0.01), and it lasted 4 weeks or more after transplantation of MSCs (EF: WMD=13.94, 95%CI 12.24 to 15.64, P<0.01; FS: WMD=9.64, 95%CI 7.98 to 11.31, P<0.01). Conclusion The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection.


Subject(s)
Heart/physiopathology , Hematopoietic Stem Cell Transplantation , Myocardial Infarction/physiopathology , Animals , Publication Bias , Rats , Stroke Volume
3.
Inflammation ; 38(2): 664-71, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25015882

ABSTRACT

The aim of the study was to investigate the anti-apoptotic potency of TNFR:Fc gene in ischemia/reperfusion-induced myocardial cell injury and hypoxia/reoxygenation-induced H9c2 rat cardiomyocytes injury. Rats were randomly divided into the following groups (n=8): (1) sham operation group; (2) ischemia-reperfusion (I/R) rats treated with rAAV-EGFP; (3) I/R rats treated with rAAV-TNFR:Fc group. rAAV-EGFP or rAAV-TNFR:Fc was injected intra-myocardial at four sites on the anterior and posterior walls of left ventricle immediately after the construction of I/R-induced AMI model in rats. The effects of TNFR:Fc on apoptosis and cardiacfunction were observed after 72 h of coronary reperfusion. In the in vitro study, apoptosis was analyzed in H9c2 rat cardiomyocytes treated either with nomoxia alone, or hypoxia/reoxygenation in the presence of rAAV-GFP or rAAV-TNFR:Fc. We found that (1) TNFR:Fc gene improved cardiac function (EF, LVESP, LVEDP and dp/dt max) post I/R-induced AMI; (2) TNFR:Fc gene inhibited I/R-induced apoptosis and attenuated the level of TNF-α in serum and cardiac tissue; (3) TNFR:Fc gene prevented apoptosis in hypoxia/reoxygenation-induced H9c2 rat cardiomyocytes associated with inhibition of caspase-3 activation and normalization of ratio of the Bcl-2/Bax. We concluded that TNFR:Fc gene transfection has anti-apoptotic potency in ischemia/reperfusion-induced myocardial cell injury.


Subject(s)
Apoptosis/genetics , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac , Receptors, Fc/genetics , Receptors, Tumor Necrosis Factor/genetics , Animals , Apoptosis/drug effects , Male , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Receptors, Fc/administration & dosage , Receptors, Tumor Necrosis Factor/administration & dosage
4.
Inflammation ; 37(6): 2156-63, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24942913

ABSTRACT

It has been reported that insulin-like growth factor 1 (IGF-1) promoted migration of endothelial cells and cardiac resident progenitor cells. In the previous study, we found the time-dependent and dose-dependent effects of IGF-1 treatment on the CXCR4 expression in MSCs in vitro, but it is still not clear whether IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation role in myocardial infarction. In this study, we demonstrated that IGF-1-treated MSCs' transplantation attenuate cardiac dysfunction, increase the survival of engrafted cells in the ischemic heart, decrease myocardium cells apoptosis, and inhibit protein production and gene expression of inflammation cytokines tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6. IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation roles in post-myocardial infarction.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Animals , Cell Survival/drug effects , Cell Survival/physiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/therapy , Male , Mesenchymal Stem Cells/drug effects , Myocardial Infarction/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...