Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.809
Filter
1.
Mol Plant ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38822523

ABSTRACT

A precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands, however, such mechanisms regulating nodulation factor (NF) receptors (NFR1/NFR5) in perceiving NF to establish symbiosis remain unclear. This study unveils the pivotal role of the NFR-Interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. NIRE1 demonstrates a dual function in this regulatory process. NIRE1 associates with both NFR1/NFR5, facilitating their degradations through K48-linked polyubiquitination before rhizobial inoculation. Following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1. This switch enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, the expression of phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings provide the inaugural evidence of a single E3 ligase undergoing a phosphorylation-dependent functional switch, dynamically and precisely regulating NF receptor protein levels.

2.
Placenta ; 153: 59-74, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38823320

ABSTRACT

INTRODUCTION: Preeclampsia (PE) is a pregnancy-specific complication. Its etiology and pathogenesis remain unclear. Previous studies have shown that neutrophil extracellular traps (NETs) cause placental dysfunction and lead to PE. Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) have been widely used to treat different diseases. We investigated whether hUCMSC-EXOs can protect against NET-induced placental damage. METHODS: NETs were detected in the placenta by immunofluorescence. The impact of NETs on cellular function and the effect of hUCMSC-EXOs on NET-induced placental damage were evaluated by 5-ethynyl-20-deoxyuridine (EdU) cell proliferation, lactate dehydrogenase (LDH), reactive oxygen species (ROS), and cell migration, invasion and tube formation assays; flow cytometry; and Western blotting. RESULTS: The number of placental NETs was increased in PE patients compared with control individuals. NETs impaired the function of endothelial cells and trophoblasts. These effects were partially reversed after N-acetyl-L-cysteine (NAC; ROS inhibitor) or DNase I (NET lysing agent) pretreatment. HUCMSC-EXOs ameliorated NET-induced functional impairment of endothelial cells and trophoblasts in vitro, partially reversed NET-induced inhibition of endothelial cell and trophoblast proliferation, and partially restored trophoblast migration and invasion and endothelial cell tube formation. Exosomes inhibited ROS production in these two cell types, suppressed p38 mitogen-activated protein kinase (p38 MAPK) signaling activation, activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, and modulated the Bax, Bim, Bcl-2 and cleaved caspase-3 levels to inhibit apoptosis. DISCUSSION: HUCMSC-EXOs can reverse NET-induced placental endothelial cell and trophoblast damage, possibly constituting a theoretical basis for the treatment of PE with exosomes.

3.
Bioorg Med Chem Lett ; : 129824, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823729

ABSTRACT

Cancer, as a public health issue, is the leading cause of death worldwide. Tetrahydroisoquinoline derivatives have effective biological activities and can be used as potential therapeutic agents for antitumor drugs. In this work, we designed and synthesized a series of novel tetrahydroisoquinoline compounds and evaluated their antitumor activity in vitro on several representative human cancer cell lines. The results showed that the vast majority of compounds showed good inhibitory activities against the cancer cell lines of HCT116, MDA-MB-231, HepG2, and A375.

4.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824241

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Subject(s)
Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
5.
Opt Lett ; 49(11): 3018-3021, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824317

ABSTRACT

We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.

6.
Lancet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

7.
Adv Sci (Weinh) ; : e2403431, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829272

ABSTRACT

As an efficient and environmental-friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value-added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo-based metal-organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π-π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d-band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2'-phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre-oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as-designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p-hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.

8.
Abdom Radiol (NY) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831075

ABSTRACT

OBJECTIVE: To investigate the feasibility and accuracy of predicting locoregional recurrence (LR) in elderly patients with esophageal squamous cell cancer (ESCC) who underwent radical radiotherapy using a pairwise machine learning algorithm. METHODS: The 130 datasets enrolled were randomly divided into a training set and a testing set in a 7:3 ratio. Clinical factors were included and radiomics features were extracted from pretreatment CT scans using pyradiomics-based software, and a pairwise naive Bayes (NB) model was developed. The performance of the model was evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). To facilitate practical application, we attempted to construct an automated esophageal cancer diagnosis system based on trained models. RESULTS: To the follow-up date, 64 patients (49.23%) had experienced LR. Ten radiomics features and two clinical factors were selected for modeling. The model demonstrated good prediction performance, with area under the ROC curve of 0.903 (0.829-0.958) for the training cohort and 0.944 (0.849-1.000) for the testing cohort. The corresponding accuracies were 0.852 and 0.914, respectively. Calibration curves showed good agreement, and DCA curve confirmed the clinical validity of the model. The model accurately predicted LR in elderly patients, with a positive predictive value of 85.71% for the testing cohort. CONCLUSIONS: The pairwise NB model, based on pre-treatment enhanced chest CT-based radiomics and clinical factors, can accurately predict LR in elderly patients with ESCC. The esophageal cancer automated diagnostic system embedded with the pairwise NB model holds significant potential for application in clinical practice.

9.
Front Microbiol ; 15: 1364857, 2024.
Article in English | MEDLINE | ID: mdl-38690361

ABSTRACT

Background: Hyperuricemia (HUA) is a prevalent metabolic disorder whose development is associated with intestinal microbiota. Therefore, probiotics have emerged as a potential and safe approach for lowering uric acid (UA) levels. However, the underlying mechanisms of many effective probiotic strains remain unknown. Methods and results: C57BL/6 mice were randomly divided into two groups: control and model groups. The model group received 12 weeks of potassium oxonate. Through 16s sequencing we found that HUA resulted in a significant decrease in the total diversity of all intestinal segments. When each intestinal segment was analyzed individually, the reduction in diversity was only significant in the cecum and colon sections. RDA analysis showed that lactobacilli in the rat colon exhibited a strong correlation with model group, suggesting that Lactobacillus may play an important role in HUA. Consequently, the preventive effects of Lactobacillus johnsonii YH1136 against HUA were investigated. C57BL/6 mice were randomly divided into three groups: control, model and YH1136 groups. The results showed that administering Lactobacillus johnsonii YH1136 effectively reduced serum UA levels in vivo by inhibiting hepatic xanthine oxidase (XOD) activity and promoting renal ABCG2 transporter expression. Moreover, supplementation with Lactobacillus johnsonii YH1136 significantly ameliorated pathological damage in the kidney and liver, thereby reducing UA accumulation. Conclusion: Hyperuricemia is accompanied by an altered composition of multiple gut bacteria, of which Lactobacillus is a key genus. Lactobacillus johnsonii YH1136 may ameliorate renal involvement in HUA via the gut-kidney axis.

10.
Anal Chim Acta ; 1306: 342612, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692793

ABSTRACT

Despite the widespread utilization of variable valence metals in electrochemistry, it is still a formidable challenge to enhance the valence conversion efficiency to achieve excellent catalytic activity without introducing heterophase elements. Herein, the in-situ precipitation of Co particles on Co2VO4 not only enhanced the concentration of oxygen vacancies (Ov) but also generated a greater number of low-valence metals, thereby enabling efficient reduction towards Hg(II). The electroanalysis results demonstrate that the sensitivity of Co/Co2VO4 towards Hg(II) was measured at an impressive value of 1987.74 µA µM-1 cm-2, significantly surpassing previously reported results. Further research reveals that Ov acted as the main adsorption site to capture Hg(II). The redox reactions of Co2+/Co3+ and V3+/V4+ played a synergistic role in the reduction of Hg(II), accompanied by the continuous supply of electrons from zero-valent Co to expedite the valence cycle. The Co/Co2VO4/GCE presented remarkable selectivity towards Hg(II), with excellent stability, reproducibility, and anti-interference capability. The electrode also exhibited minimal sensitivity fluctuations towards Hg(II) in real water samples, underscoring its practicality for environmental applications. This study elucidates the mechanism underlying the surface redox reaction of metal oxides facilitated by zero-valent metals, providing us with new strategies for further design of efficient and practical sensors.

11.
Research (Wash D C) ; 7: 0359, 2024.
Article in English | MEDLINE | ID: mdl-38694199

ABSTRACT

Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m2·h·bar while still maintaining ~96% Na2SO4 rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.

12.
ChemMedChem ; : e202400120, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696276

ABSTRACT

Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.

13.
Phys Rev Lett ; 132(16): 160801, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701444

ABSTRACT

A solid-state approach for quantum networks is advantageous, as it allows the integration of nanophotonics to enhance the photon emission and the utilization of weakly coupled nuclear spins for long-lived storage. Silicon carbide, specifically point defects within it, shows great promise in this regard due to the easy of availability and well-established nanofabrication techniques. Despite of remarkable progresses made, achieving spin-photon entanglement remains a crucial aspect to be realized. In this Letter, we experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line. The spin state is measured by detecting photons scattered in the phonon sideband. The photonic qubit is encoded in the time-bin degree of freedom and measured using an unbalanced Mach-Zehnder interferometer. Photonic correlations not only reveal the quality of the entanglement but also verify the deterministic nature of the entanglement creation process. By harnessing two pairs of such spin-photon entanglement, it becomes straightforward to entangle remote quantum nodes at long distance.

15.
Cont Lens Anterior Eye ; : 102178, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724427

ABSTRACT

OBJECTIVE: This study aimed to compare the changes in corneal morphological characteristics in corneal topography assessments performed after wearing orthokeratology (OK) lenses with different back optic zone diameters (BOZDs). These changes included the change ratios of the apical corneal power (ACP), the maximum relative corneal refractive power (mRCRP), and the treatment zone diameter (TZD). METHODS: Data from 133 children with myopia (average age 9.50 ± 1.23 years) treated at Fudan University Eye and Ear, Nose, and Throat Hospital were retrospectively analyzed. All participants wore the same brand of tangent-design OK lens (corneal refractive therapy, CRT). According to the BOZD, the patients were divided into two groups, of 5.0 and 6.0 mm BOZD, respectively. Corneal topography was analyzed at baseline, as well as 1 day, 1 week, and 1 month after wearing the lenses, and the change ratios of ACP, mRCRP, and TZD were compared between the two groups. RESULTS: The change ratio of the ACP did not differ significantly between the BOZD 5.0 and 6.0 groups after 1 day or 1 week of lens wear (P = 0.170 and P = 0.113, respectively). However, after 1 month of lens wear, the change ratio of the ACP in the BOZD 5.0 group was significantly larger than that in the BOZD 6.0 group (P < 0.001). After 1 month of lens wear, the mRCRP along the horizontal and vertical meridians was higher (P < 0.05) and the TZD was significantly smaller (P < 0.001) in the BOZD 5.0 group than in the BOZD 6.0 group. CONCLUSION: In CRT OK lenses, a small BOZD lens can produce faster corneal shaping, a larger mRCRP, and a smaller TZD, which may have a better effect on slowing ocular axial length elongation. The lens parameters are also a factor affecting the TZD.

16.
Curr Med Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38726785

ABSTRACT

OBJECTIVE: To investigate the magnetic resonance imaging (MRI) radiomics models in evaluating the human epidermal growth factor receptor 2(HER2) expression in breast cancer.

Materials and Methods: The MRI data of 161 patients with invasive ductal carcinoma (non-special type) of breast cancer were retrospectively collected, and the MRI radiomics models were established based on the MRI imaging features of the fat suppression T2 weighted image (T2WI) sequence, dynamic contrast-enhanced (DCE)-T1WIsequence and joint sequences. The T-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used for feature dimensionality reduction and screening, respectively, and the random forest (RF) algorithm was used to construct the classification model.

Results: The model established by the LASSO-RF algorithm was used in the ROC curve analysis. In predicting the low expression state of HER2 in breast cancer, the radiomics models of the fat suppression T2WI sequence, DCE-T1WI sequence, and the combination of the two sequences showed better predictive efficiency. In the receiver operating characteristic (ROC) curve analysis for the verification set of low, negative, and positive HER2 expression, the area under the ROC curve (AUC) value was 0.81, 0.72, and 0.62 for the DCE-T1WI sequence model, 0.79, 0.65 and 0.77 for the T2WI sequence model, and 0.84, 0.73 and 0.66 for the joint sequence model, respectively. The joint sequence model had the highest AUC value.

Conclusions: The MRI radiomics models can be used to effectively predict the HER2 expression in breast cancer and provide a non-invasive and early assistant method for clinicians to formulate individualized and accurate treatment plans.

17.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
18.
Mol Cell Proteomics ; : 100783, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729610

ABSTRACT

High myopia is a leading cause of blindness worldwide, among which pathologic myopia, characterized by typical myopic macular degeneration, is the most detrimental. However, its pathogenesis remains largely unknown. Here, using an HuProt array, we first initiated a serological autoantibody profiling of high myopia and identified 18 potential autoantibodies, of which anti-LIMS1 autoantibody was validated by a customized focused microarray. Further subgroup analysis revealed its actual relevance to pathologic myopia, rather than simple high myopia without myopic macular degeneration. Mechanistically, anti-LIMS1 autoantibody predominantly belonged to IgG1/IgG2/IgG3 subclasses. Serum IgG obtained from patients with pathologic myopia could disrupt the barrier function of retinal pigment epithelial cells via cytoskeleton disorganization and tight junction component reduction, and also trigger a pro-inflammatory mediator cascade in retinal pigment epithelial cells, which were all attenuated by depletion of anti-LIMS1 autoantibody. Together, these data uncover a previously unrecognized autoimmune etiology of myopic macular degeneration in pathologic myopia.

19.
J Hum Genet ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730005

ABSTRACT

Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. However, the genetic spectrum of this disease is not yet complete. In this study, we identified a novel variant m.4344T>C in mitochondrial tRNAGln from a patient with developmental delay. The mutant loads of m.4344T>C were 95% and 89% in the patient's blood and oral epithelial cells, respectively. Multialignment analysis showed high evolutionary conservation of this nucleotide. TrRosettaRNA predicted that m.4344T>C variant would introduce an additional hydrogen bond and alter the conformation of the T-loop. The transmitochondrial cybrid-based study demonstrated that m.4344T>C variant impaired the steady-state level of mitochondrial tRNAGln and decreased the contents of mitochondrial OXPHOS complexes I, III, and IV, resulting in defective mitochondrial respiration, elevated mitochondrial ROS production, reduced mitochondrial membrane potential and decreased mitochondrial ATP levels. Altogether, this is the first report in patient carrying the m.4344T>C variant. Our data uncover the pathogenesis of the m.4344T>C variant and expand the genetic mutation spectrum of mitochondrial diseases, thus contributing to the clinical diagnosis of mitochondrial tRNAGln gene variants-associated mitochondrial diseases.

20.
Discov Oncol ; 15(1): 149, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720108

ABSTRACT

PURPOSE: The research endeavors to explore the implications of CD47 in cancer immunotherapy effectiveness. Specifically, there is a gap in comprehending the influence of CD47 on the tumor immune microenvironment, particularly in relation to CD8 + T cells. Our study aims to elucidate the prognostic and immunological relevance of CD47 to enhance insights into its prospective utilities in immunotherapeutic interventions. METHODS: Differential gene expression analysis, prognosis assessment, immunological infiltration evaluation, pathway enrichment analysis, and correlation investigation were performed utilizing a combination of R packages, computational algorithms, diverse datasets, and patient cohorts. Validation of the concept was achieved through the utilization of single-cell sequencing technology. RESULTS: CD47 demonstrated ubiquitous expression across various cancer types and was notably associated with unfavorable prognostic outcomes in pan-cancer assessments. Immunological investigations unveiled a robust correlation between CD47 expression and T-cell infiltration rather than T-cell exclusion across multiple cancer types. Specifically, the CD47-high group exhibited a poorer prognosis for the cytotoxic CD8 + T cell Top group compared to the CD47-low group, suggesting a potential impairment of CD8 + T cell functionality by CD47. The exploration of mechanism identified enrichment of CD47-associated differentially expressed genes in the CD8 + T cell exhausted pathway in multiple cancer contexts. Further analyses focusing on the CD8 TCR Downstream Pathway and gene correlation patterns underscored the significant involvement of TNFRSF9 in mediating these effects. CONCLUSION: A robust association exists between CD47 and the exhaustion of CD8 + T cells, potentially enabling immune evasion by cancer cells and thereby contributing to adverse prognostic outcomes. Consequently, genes such as CD47 and those linked to T-cell exhaustion, notably TNFRSF9, present as promising dual antigenic targets, providing critical insights into the field of immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...