Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(10): 9622-9632, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37134301

ABSTRACT

Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.

2.
Sci Adv ; 9(7): eade6973, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800416

ABSTRACT

We report multifunctional tendon-mimetic hydrogels constructed from anisotropic assembly of aramid nanofiber composites. The stiff nanofibers and soft polyvinyl alcohol in these anisotropic composite hydrogels (ACHs) mimic the structural interplay between aligned collagen fibers and proteoglycans in tendons. The ACHs exhibit a high modulus of ~1.1 GPa, strength of ~72 MPa, fracture toughness of 7333 J/m2, and many additional characteristics matching those of natural tendons, which was not achieved with previous synthetic hydrogels. The surfaces of ACHs were functionalized with bioactive molecules to present biophysical cues for the modulation of morphology, phenotypes, and other behaviors of attached cells. Moreover, soft bioelectronic components can be integrated on ACHs, enabling in situ sensing of various physiological parameters. The outstanding mechanics and functionality of these tendon mimetics suggest their further applications in advanced tissue engineering, implantable prosthetics, human-machine interactions, and other technologies.


Subject(s)
Nanofibers , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Tissue Engineering , Polyvinyl Alcohol/chemistry , Tendons , Nanofibers/chemistry
3.
Adv Mater ; 34(50): e2207350, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222392

ABSTRACT

Kirigami designs are advantageous for the construction of wearable electronics due to their high stretchability and conformability on the 3D dynamic surfaces of the skin. However, suitable materials technologies that enable robust kirigami devices with desired functionality for skin-interfaces remain limited. Here, a versatile materials platform based on a composite nanofiber framework (CNFF) is exploited for the engineering of wearable kirigami electronics. The self-assembled fibrillar network involving aramid nanofibers and poly(vinyl alcohol) combines high toughness, permeability, and manufacturability, which are desirable for the fabrication of hybrid devices. Multiscale simulations are conducted to explain the high fracture resistance of the CNFF-based kirigami structures and provide essential guidance for the design, which can be further generalized to other kirigami devices. Various microelectronic sensors and electroactive polymers are integrated onto a CNFF-based materials platform to achieve electrocardiogram (ECG), electromyogram (EMG), skin-temperature measurements, and measurement of other physiological parameters. These mechanically robust, multifunctional, lightweight, and biocompatible kirigami devices can shed new insights for the development of advanced wearable systems and human-machine interfaces.


Subject(s)
Nanofibers , Wearable Electronic Devices , Humans , Electronics , Polymers/chemistry
4.
Adv Mater ; 33(3): e2004425, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33283351

ABSTRACT

Recent developments in soft functional materials have created opportunities for building bioelectronic devices with tissue-like mechanical properties. Their integration with the human body could enable advanced sensing and stimulation for medical diagnosis and therapies. However, most of the available soft electronics are constructed as planar sheets, which are difficult to interface with the target organs and tissues that have complex 3D structures. Here, the recent approaches are highlighted to building 3D interfaces between soft electronic tools and complex biological organs and tissues. Examples involve mesh devices for conformal contact, imaging-guided fabrication of organ-specific electronics, miniaturized probes for neurointerfaces, instrumented scaffold for tissue engineering, and many other soft 3D systems. They represent diverse routes for reconciling the interfacial mismatches between electronic tools and biological tissues. The remaining challenges include device scaling to approach the complexity of target organs, biological data acquisition and processing, 3D manufacturing techniques, etc., providing a range of opportunities for scientific research and technological innovation.


Subject(s)
Electronics, Medical , Tissue Engineering/methods , Humans , Prostheses and Implants
5.
Cell Stress Chaperones ; 18(2): 203-13, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160804

ABSTRACT

Photodynamic therapy (PDT) is a regulatory-approved modality for treating a variety of malignant tumors. It induces tumor tissue damage via photosensitizer-mediated oxidative cytotoxicity. The heat shock protein 70 (HSP70-1) is a stress protein encoded by the HSPA1A gene and is significantly induced by oxidative stress associated with PDT. The aim of this study was to identify the functional region of the HSPA1A promoter that responds to PDT-induced oxidative stress and uses the stress responsiveness of HSPA1A expression to establish a rapid and cost-effective photocytotoxic assessment bioassay to evaluate the photodynamic potential of photosensitizers. By constructing luciferase vectors with a variety of hspa1a promoter fractions and examining their relative luciferase activity, we demonstrated that the DNA sequence from -218 to +87 of the HSPA1A gene could be used as a functional promoter to detect the PDT-induced oxidative stress. The maximal relative luciferase activity level of HSPA1A (HSP70-1) induced by hypericin-PDT was nearly nine times that of the control. Our results suggest that the novel reporter gene assay using a functional region of the HSP70A1A promoter has significant advantages for the detection of photoactivity in terms of both speed and sensitivity, when compared with a cell viability test based on ATP quantification and ROS levels. Furthermore, phthalocyanine zinc and methylene blue both induced significantly elevated levels of relative luciferase activity in a dose-dependent manner.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , Luciferases/metabolism , Oxidative Stress/drug effects , Photosensitizing Agents/toxicity , Base Sequence , Breast Neoplasms/drug therapy , Cell Survival/drug effects , Female , Genes, Reporter , HSP70 Heat-Shock Proteins/metabolism , Humans , Kinetics , Luciferases/genetics , MCF-7 Cells , Molecular Sequence Data , Photochemotherapy , Photosensitizing Agents/therapeutic use , Promoter Regions, Genetic , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...