Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824265

ABSTRACT

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Subject(s)
Cystatins , Fish Diseases , Fish Proteins , Flatfishes , Macrophages , Vibrio , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/metabolism , Vibrio/pathogenicity , Cystatins/genetics , Cystatins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Macrophages/metabolism , Macrophages/immunology , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio Infections/genetics , NF-kappa B/metabolism , Cloning, Molecular/methods , Gene Expression Regulation
2.
Fish Shellfish Immunol ; : 109686, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852787

ABSTRACT

The scavenger receptors (SRs) gene family is considered as the membrane-associated pattern recognition receptors that plays important roles in the immune responses of organisms. However, there is currently limited research on the systematic identification of the SRs gene family in teleost and their role in the innate immunity of S. schegelii. In this study, we identified and annotated 15 SRs genes in S. schegelii. Through phylogenetic analysis, analysis of conserved domains, gene structure, and motif composition, we found that SRs gene family within different classes were relatively conserved. Additionally, we used qRT-PCR to analyze the expression patterns of SRs genes in immune-related tissues from healthy and Acinetobacter johnsonii-infected S. schegelii. The results showed that SRs genes exhibited different tissue expression patterns and the expression of SRs genes significantly changed after A. johnsonii infection. These results provided a valuable basis for further understanding of the functions of SRs in the innate immune response of S. schegelii.

3.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762095

ABSTRACT

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Lectins, C-Type , Macrophages , Perciformes , Receptors, Pattern Recognition , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Macrophages/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Fish Diseases/immunology , Immunity, Innate/genetics , Perciformes/immunology , Perciformes/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Fishes/immunology , Fishes/genetics
4.
Fish Shellfish Immunol ; 140: 108950, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37500028

ABSTRACT

Tumor necrosis factor receptor-associated factor (TRAF) is an important structural protein, which can bind to TNF receptors and participate in the regulation of TNF signaling pathway. Nonetheless, few studies have been conducted to investigate the systematic identification of TRAF gene family in teleost and role in innate immunity of turbot (Scophthalmus maximus). In this study, eight TRAF genes, namely SmTRAF2aa, SmTRAF2ab, SmTRAF2b, SmTRAF3, SmTRAF4a, SmTRAF5, SmTRAF6 and SmTRAF7, were identified and annotated in turbot by using bioinformatics methods. Analysis of the phylogenetic, syntenic and molecular evolution demonstrated that all SmTRAF members were evolutionarily conserved in teleost. Domain analysis showed all SmTRAF proteins contained a typical conserved N-terminal RING finger domain. Most SmTRAF proteins contained a MATH domain at the C-terminal, while SmTRAF7 contains seven duplicate WD40 domains. In addition, quantitative real-time PCR was performed to detect the expression patterns of SmTRAFs in tissues from healthy and Vibrio anguillarum infected turbots. The results indicated SmTRAFs had diverse tissue expression patterns and the expression of TRAF gene changed significantly after V. anguillarum infection. This study provided a basis for understanding the roles of TRAFs in the innate immune response of turbot.


Subject(s)
Fish Diseases , Flatfishes , Vibrio Infections , Vibrio , Animals , Vibrio/physiology , Vibrio Infections/genetics , Vibrio Infections/veterinary , Gene Expression Regulation , Phylogeny , Fish Proteins/chemistry , Evolution, Molecular , Gene Expression Profiling/veterinary
5.
Dev Comp Immunol ; 132: 104397, 2022 07.
Article in English | MEDLINE | ID: mdl-35307477

ABSTRACT

The scavenger receptors (SRs) gene family, as one of pattern recognition receptors, participates in the innate immune response in diverse lineages. However, the systematic identification, characteristics and functions of SRs family are lacking in teleost. Here, we identified all 19 SRs family members in Japanese flounder (Paralichthys olivaceus) based on the genome and transcriptome data. Phylogenetic and Ka/Ks analysis demonstrated that these SRs genes were divided into five classes and all exhibited pronounced purified selection pressures. Whole genome duplication event was found in colec12, scarb2, and lamp1. Gene structure, functional domain and motif distribution analyses indicated that SRs within the different subfamilies are severely conservative. SRs genes showed diverse expression patterns in the embryogenesis and unchanged tissues. The regulations of 14 SRs genes in blood, gill and kidney after E. tarda infection suggested their roles in innate immune response. Meanwhile, ten SRs genes were differentially expressed after E. tarda stimulation in macrophages in vitro. Then we proved that PoSCARA3 could suppress the activity of NF-κB and AP-1 in HEK 293T cells by dual-luciferase assays. In summary, this study provided valuable basis for further functional characterization and immune functions of SRs genes in P. olivaceus.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Flounder , Animals , Edwardsiella tarda , Fish Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Phylogeny , Receptors, Scavenger/metabolism
6.
Gene ; 817: 146201, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35063574

ABSTRACT

Lhx8, belonging to the LIM-Homebox family, is involved in the tooth, nervous system, and primordial follicles development in mammals. However, little is known about the regulatory roles of lhx8 in teleosts. In this study, two lhx8 duplicates were identified in Paralichthys olivaceus, termed Polhx8a and Polhx8b, respectively. Bioinformatic analysis showed that Polhx8a was more likely to be a teleost-specific paralog. According to expression analysis, Polhx8a transcripts were almost exclusively concentrated in the oocytes, while Polhx8b was weakly expressed in the spleen, gill, and some facial organs, indicating sub-functionalization of this gene pair during evolution. Furthermore, Polhx8a mRNA level elevated from perinucleolar oocyte (PNO) stage to vitellogenic oocyte (VO) stage transition and changed after exogenous hormone stimulation, proving that Polhx8a was involved in the oocyte development and could be regulated by sex hormones. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) experiments captured the positive protein interactions between PoLhx8a and the other two oocyte-specific transcription factors: PoFigla and PoNobox. After knocking down lhx8a in embryos or adult ovaries in vivo, the expression of oocyte-associated genes was significantly down-regulated (P < 0.05). Our findings suggest the evolution and functional differentiation of lhx8 genes, and shed light on the potential role of lhx8a in protein interactions and gene regulation in teleosts.


Subject(s)
Fish Proteins/genetics , Flounder/genetics , LIM-Homeodomain Proteins/genetics , Animals , Evolution, Molecular , Female , Fish Proteins/physiology , Flounder/physiology , Gene Knockdown Techniques/veterinary , HeLa Cells , Humans , LIM-Homeodomain Proteins/physiology , Male , Oogenesis/genetics , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...