Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 667: 700-712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670013

ABSTRACT

Aqueous zinc-ion capacitors (AZICs) are considered potential energy storage devices thanks to their ultrahigh power density, high safety, and extended cycling life. Carbon-based materials widely used as cathodes in AZICs face challenges, such as inappropriate pore sizes, poor electrolyte-electrode wettability, and insufficient vacancy defects and active sites. These limitations hinder efficient energy storage capacity and long-term stability. To address these issues, the B and F co-doped hierarchical porous carbon cathode materials (BFPC) are constructed through a facile annealing treatment process. The BFPC-2//Zn device exhibited high capacities of 222.4 and 118.3 mAh g-1 at current densities of 0.2 and 10 A g-1, respectively. Notably, the BFPC-2//Zn device demonstrated long-term cycling stability with a high capacity retention of 96.9 % after 20,000 cycles at 10 A g-1. Additionally, the assembled BFPC-2 based AZICs displayed a maximum energy density of 175.8 Wh kg-1 and an ultrahigh power density of 17.3 kW kg-1. Mechanism studies revealed that the exceptional energy storage ability and charge-transfer process of the BFPC cathode are attributed to the synergistic effect of B and F heteroatoms and the coupling effect between vacancy defects and pore size. This work presents a novel design strategy by incorporating B and F active sites into hierarchical porous carbon materials, providing enhanced energy storage capabilities for practical application in AZICs.

2.
Environ Sci Technol ; 58(14): 6370-6380, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38497719

ABSTRACT

The discovery of the significant lethal impacts of the tire additive transformation product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) on coho salmon has garnered global attention. However, the bioaccumulation and trophic transfer of tire additives and their transformation products (TATPs) within food webs remain obscure. This study first characterized the levels and compositions of 15 TATPs in the Pearl River Estuary, estimated their bioaccumulation and trophic transfer potential in 21 estuarine species, and identified priority contaminants. Our observations indicated that TATPs were prevalent in the estuarine environment. Eight, six, seven, and 10 TATPs were first quantified in the shrimp, sea cucumber, snail, and fish samples, with total mean levels of 45, 56, 64, and 67 ng/g (wet weight), respectively. N,N'-Diphenyl-p-phenylenediamine (DPPD) and N,N'-bis(2-methylphenyl)-1,4-benzenediamine (DTPD) exhibited high bioaccumulation. Significant biodilution was only identified for benzothiazole, while DPPD and DTPD displayed biomagnification trends based on Monte Carlo simulations. The mechanisms of bioaccumulation and trophodynamics of TATPs could be explained by their chemical hydrophobicity, molecular mass, and metabolic rates. Based on a multicriteria scoring technique, DPPD, DTPD, and 6PPD-Q were characterized as priority contaminants. This work emphasizes the importance of biomonitoring, particularly for specific hydrophobic tire additives.


Subject(s)
Food Chain , Phenylenediamines , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
J Colloid Interface Sci ; 664: 146-155, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460380

ABSTRACT

The imbalances of storage capacity and reaction kinetics between carbonaceous cathodes and zinc (Zn) anodes restrict the widespread application of Zn-ion hybrid capacitor (ZIHC). Structure optimization is a promising strategy for carbon materials to achieve sufficient Zn2+ storage sites and satisfied ion-electron kinetics. Herein, porous graphitic carbon nanosheets (PGCN) were simply synthesized using a K3[Fe(C2O4)3]- and urea-assisted foaming strategy with polyvinylpyrrolidone as carbon precursor, followed by activation and graphitization. Sufficient pores with well-matched pore sizes (0.80-1.94 nm) distributed across the carbon nanosheets can effectively shorten mass-transfer distance, promoting accessibility to active sites. A partially graphitic carbon structure with high graphitization degree can accelerate electron transfer. Furthermore, high nitrogen doping (7.2 at.%) provides additional Zn2+ storage sites to increase storage capacity. Consequently, a PGCN-based ZIHC has an exceptional specific capacity of 181 mAh g-1 at 0.5 A g-1, superb energy density of 145 Wh kg-1, and excellent cycling ability without capacity decay over 10,000 cycles. In addition, the flexible solid-state device assembled with PGCN exhibits excellent electrochemical performances even when bent at various angles. This study proposes a straightforward and economical strategy to construct porous graphitic carbon nanosheets with enhanced storage capacity and fast reaction kinetics for the high performance of ZIHC.

4.
Environ Int ; 184: 108478, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38330749

ABSTRACT

Estuaries serve as crucial filters for land-based pollutants to the open sea, but there is a lack of information on the migration and fate of organophosphate flame retardants (OPFRs) within estuaries. This study focused on the Pearl River Estuary (PRE) by examining the co-occurrence of OPFRs and their metabolites and quantifying their transport fluxes using a mass balance model. The seawater concentrations of OPFRs and their metabolites exhibited significant seasonal variations (p < 0.01), while the sediment concentrations of OPFRs reflected the long-term distributional equilibrium in the PRE. The concentration of Σ9OPFRs in seawater showed a relentless dilution from the entrance to the offshore region in the normal and wet seasons, which was significantly in accordance with the gradients of pH, dissolved oxygen (DO), and salinity (p < 0.05). Furthermore, horizontal migration dominated the transport of OPFRs, and the inventory assessment revealed that both the water column and sediment were important reservoirs in the PRE. According to the estimated fluxes from the mass balance model, riverine input emerged as the principal pathway for OPFR entry into the PRE (1.55 × 105, 6.28 × 104, and 9.00 × 104 kg/yr in the normal, dry and wet seasons, respectively), whereas outflow to the open sea predominantly determined the main fates of the OPFRs. The risk quotient (RQ) results showed that EHDPHP (0.835) in water posed medium ecological risk, while other OPFRs and metabolites presented relatively lower risk (RQ < 0.1). The risk control effects were evaluated through scenario simulations of mathematical fitting between controllable source factors and the RQ of risky OPFR. The risk of EHDPHP in the PRE could be effectively reduced by restricting its concentrations in entrance region (<9.31, 8.67, and 12.7 ng/L in the normal, dry and wet seasons, respectively) of the PRE. This research offers foundational insights into environmental management and pollution control strategies for emerging pollutants in estuaries.


Subject(s)
Environmental Pollutants , Flame Retardants , Water Pollutants, Chemical , Organophosphates/analysis , Estuaries , Flame Retardants/analysis , Rivers , Water Pollutants, Chemical/analysis , Water , China
5.
J Hazard Mater ; 465: 133390, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38163409

ABSTRACT

Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.


Subject(s)
Environmental Pollutants , Perciformes , Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Humans , Food Chain , Bioaccumulation , Ecosystem , Zebrafish/metabolism , Biotransformation , Perciformes/metabolism , Environmental Pollutants/analysis , Ethers , Water Pollutants, Chemical/analysis
6.
J Hazard Mater ; 465: 133088, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38016320

ABSTRACT

The substantial utilization of antibiotics causes their "pseudo-persistence" in offshore environments. Published studies on antibiotic surveillance in food webs have primarily emphasized on parent forms; however, the compositions and concentrations of conjugated antibiotics in aquatic organisms remain largely unexplored. This study systematically examined the distribution characteristics and trophodynamics of free antibiotics and their conjugated forms in an estuarine food web. Total antibiotic levels differed insignificantly between the surface and bottom waters. The total mean values of free antibiotics in crabs, fish, shrimps, sea cucumbers, and snails varied from 0.77 to 1.4 ng/g (wet weight). The numbers and values of antibiotics rose in these biological samples after enzymatic hydrolysis. Conjugated antibiotics accounted for 23.8-76.9% of the total antibiotics in the biological samples, revealing that conjugated forms play a non-negligible role in aquatic organisms. More number of antibiotics exhibited bioaccumulation capabilities after enzymatic hydrolysis. In the food web, the free forms of anhydroerythromycin and conjugated forms of trimethoprim and ciprofloxacin underwent trophic dilution, whereas the free forms of trimethoprim and conjugated forms of ofloxacin underwent trophic amplification. The present work provides new insights into the bioaccumulation and trophic transfer of free and conjugated antibiotics in food webs.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , Bioaccumulation , Multimedia , Water Pollutants, Chemical/analysis , Aquatic Organisms , Fishes , Trimethoprim , Environmental Monitoring , China
7.
Mar Pollut Bull ; 196: 115562, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769406

ABSTRACT

Microplastics are widely present in the marine environment, but their pollution and potential risk assessment in the seabed sediments have not been well addressed in remote sea areas. In this study, microplastics in 50 surface sediment samples from the Xuande Atolls at the Xisha of the South China Sea were studied. There were 20 samples with detectable microplastics of 5-20 items kg-1. They were all fibers in shapes and blue/transparent in colors with the dominant chemical component of polyester and the typical size of 0.02-3 mm. We found a large spatial variability of microplastic abundance in the surface sediment with generally low or undetectable levels in the lagoon deposits and the offshore deep-sea sediments but elevated abundances in the slope sediments of the Xuande Atolls. Correlation analyses suggested that microplastic variability in the Xisha sediment was less affected by local environmental parameters such as water depth, sediment particle size, organic carbon content, and sediment types. We also found that elevated microplastics in the seabed sediments on various sides of the Xuande Atolls could be related to the seasonal change in monsoon-driven currents. Finally, a low risk of microplastic pollution in the surface sediment of the Xisha is concluded based on the assessments of the polymer hazard index and the pollution load index. These findings provide not only a baseline understanding of microplastics but also their dynamics in the surface sediment of the remote Xisha area of the South China Sea.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , China , Geologic Sediments/chemistry
8.
J Colloid Interface Sci ; 651: 211-220, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542896

ABSTRACT

Herein, three-dimensional activated graphitic carbon spheres (AGCS) were constructed by simultaneous activation-graphitization of Fe-tannic acid coordination spheres with the assistance of KOH. Nanosheets-assembled AGCS with complex intersecting channel system can expose more active sites for charge storage. Simultaneous activation-graphitization can relieve trade-off relationship between porosity and conductivity of carbon materials. Benefiting from multiple synergistic effects of large specific surface area (2069 m2 g-1), abundant ion-accessible micropores (>0.78 nm), good electronic conductivity (IG/ID = 1.11), and moderate amount of oxygen doping, the optimized AGCS-2 has favored ion and electron transfer channels. AGCS-2 based zinc-ion hybrid capacitor (ZIHC) displays a high specific capacity of 148.6 mA h g-1 (334 F g-1) at 0.5 A g-1, a remarkable energy density of 119.0 W h kg-1 at 1440 W kg-1, and superior cycling life with 96% capacity retention after 10,000 cycles. This simultaneous activation-graphitization strategy may open up a new avenue to design novel carbon spheres linking optimal pores and graphitic carbon structure for ZIHC application.

9.
Environ Sci Technol ; 57(31): 11476-11488, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37462611

ABSTRACT

Ingestion is a major exposure route for hydrophobic organic pollutants in fish, but the microbial transformation and estrogenic modification of the novel plastic additives by the gut microbiota of fish remain obscure. Using an in vitro approach, we provide evidence that structure-related transformation of various plastic additives by the gastric and intestinal (GI) microbiota from crucian carp, with the degradation ratio of bisphenols and triphenyl phosphate faster than those of brominated compounds. The degradation kinetics for these pollutants could be limited by oxygen and cometabolic substrates (i.e., glucose). The fish GI microbiota could utilize the vast majority of carbon sources in a Biolog EcoPlate, suggesting their high metabolic potential and ability to transform various organic compounds. Unique microorganisms associated with transformation of the plastic additives including genera of Citrobacter, Klebsiella, and some unclassified genera in Enterobacteriaceae were identified by combining high-throughput genetic analyses and metagenomic analyses. Through identification of anaerobic transformation products by high-resolution mass spectrometry, alkyl-cleavage was found the common transformation mechanism, and hydrolysis was the major pathway for ester-containing pollutants. After anaerobic incubation, the estrogenic activities of triphenyl phosphate and bisphenols A, F, and AF declined, whereas that of bisphenol AP increased.


Subject(s)
Carps , Environmental Pollutants , Gastrointestinal Microbiome , Animals , Plastics , Estrone
10.
J Colloid Interface Sci ; 647: 306-317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37262993

ABSTRACT

Emerging aqueous zinc-ion hybrid capacitors (AZICs) are considered a promising energy storage because of their superior electrochemical performance. The pore structure, suitable heteroatom content, and graphitization degree (GD) of carbon-based cathodes significantly influence the electrochemical performance of AZICs. The N, S dual-doped porous graphitic carbon materials (LC-750) with the combined characteristics of high GD (1.11) and large specific surface area (1678.38 m2 g-1) are successfully developed by a facile "killing two birds with one stone" strategy using K3Fe(C2O4)3·3H2O as the activating and graphitizing agent, and waste sponge (WS) and coal tar pitch (CTP) as the heteroatom and carbon resource, respectively. Results show that the LC-750 cathode displays high capacities of 185.3 and 95.2 mAh g-1 at 0.2 and 10 A g-1. Specifically, the assembled LC-750//Zn capacitor can offer a maximal energy density of 119.5 Wh kg-1, a power density of 20.3 kW kg-1, and a capacity retention of 87.8% after 15,000 cycles at 10 A g-1. Density functional theory simulations demonstrate that N and S dual-doping can promote the adsorption kinetics of Zn ions. This design strategy is a feasible and cost-effective method for the preparation of dual heteroatom-doped graphitic carbon electrodes, which enables recycling of WS and CTP into high-valued products.

11.
Sci Total Environ ; 895: 165190, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37385506

ABSTRACT

The distribution and transport of atmospheric microplastics (AMPs) have raised concerns regarding their potential effects on the environment and human health. Although previous studies have reported the presence of AMPs at ground level, there is a lack of comprehensive understanding of their vertical distribution in urban environments. To gain insight into the vertical profile of AMPs, field observations were conducted at four different heights (ground level, 118 m, 168 m and 488 m) of the Canton Tower in Guangzhou, China. Results showed that the profiles of AMPs and other air pollutants had similar layer distribution patterns, although their concentrations differed. The majority of AMPs were composed of polyethylene terephthalate and rayon fibers ranging from 30 to 50 µm. As a result of atmospheric thermodynamics, AMPs generated at ground level were only partially transported upward, leading to a decrease in their abundance with increasing altitude. The study found that the stable atmospheric stability and lower wind speed between 118 m and 168 m resulted in the formation of a fine layer where AMPs tended to accumulate instead of being transported upward. This study for the first time delineated the vertical profile of AMPs within the atmospheric boundary layer, providing valuable data for understanding the environmental fate of AMPs.

12.
Water Res ; 235: 119913, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36996753

ABSTRACT

Steroids have attracted particular attention as environmental contaminants because of their severe endocrine-disrupting effects. Previous studies have predominantly focused on parent steroids; however, the levels and proportions of the free and conjugated forms of their metabolites remain largely unclear, especially in food webs. Here, we first characterized the free and conjugated forms of parent steroids and their metabolites in 26 species in an estuarine food web. The steroids were dominated by their metabolites in water samples, whereas parent compounds were predominant in sediment samples. The total mean steroid concentrations in the biota samples that underwent non-enzymatic hydrolysis decreased in the following order: crabs (27 ng/g) > fish (5.9 ng/g) > snails (3.4 ng/g) > shrimps and sea cucumbers (1.2 ng/g); and those in the biota samples that underwent enzymatic hydrolysis decreased in the following order: crabs (57 ng/g) > snails (9.2 ng/g) > fish (7.9 ng/g) > shrimps and sea cucumbers (3.5 ng/g). The proportion of metabolites in the enzymatic hydrolysis biota samples was higher (38-79%) than that (2.9-65%) in non-enzymatic ones, indicating that the free and conjugated forms of metabolites in aquatic organisms were not negligible. Most synthetic steroids were either bioaccumulative or highly bioaccumulative. Importantly, in the invertebrate food web, 17α-methyltestosterone was biomagnified, while 17ß-boldenone underwent trophic dilution. Although the estuarine water had a median ecological risk level, the health risks via aquatic product consumption were very low. This study provides novel insights into the composition and trophic transfer of steroids in an estuarine food web for the first time and highlights that free and conjugated metabolites should receive more attention, particularly in biota samples.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fishes , Steroids/metabolism , Water , China
13.
Environ Pollut ; 326: 121499, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36972813

ABSTRACT

Steroids have attracted concern worldwide because of their potential carcinogenicity and severe adverse effects on aquatic organisms. However, the contamination status of various steroids, particularly their metabolites, at the watershed level remains unknown. This was the first study to employ field investigations to elucidate the spatiotemporal patterns, riverine fluxes, and mass inventories, and conduct a risk assessment of 22 steroids and their metabolites. This study also developed an effective tool for predicting the target steroids and their metabolites in a typical watershed based on the fugacity model combined with a chemical indicator. Thirteen steroids in the river water and seven steroids in sediments were identified with total concentrations of 1.0-76 ng/L and

Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Seasons , Water , Aquatic Organisms , Rivers/chemistry , Steroids , China , Geologic Sediments/chemistry
14.
Environ Sci Technol ; 57(9): 3549-3561, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36826812

ABSTRACT

The accumulation and trophodynamics of organophosphate flame retardants (OPFRs) and their metabolites were investigated in the estuarine food web of the Pearl River, China. The mean ∑OPFR concentration among the investigated species increased in the following order: fish [431 ± 346 ng/g lipid weight (lw)] < snail (1310 ± 621 ng/g lw) < shrimp (1581 ± 1134 ng/g lw) < crab (1744 ± 1397 ng/g lw). The di-alkyl phosphates (DAPs) of di-(n-butyl) phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), and diphenyl phosphate (DPHP) were the most abundant metabolites, with concentrations same as or even higher than their corresponding parent compounds. The log bioaccumulation factors for most OPFRs were lower than 3.70, and significant biomagnification was only found for trisphenyl phosphate [TPHP, with the trophic magnification factors (TMFs) > 1]. The TMFs of OPFRs, except for TPHP and tributyl phosphate had a positive correlation with lipophilicity (log KOW, p ≤ 0.05) and a negative correlation with the biotransformation rate (log KM, p ≤ 0.05). The mean TMF > 1 was observed for all of the OPFR metabolites based on the bootstrap regression method. The "pseudo-biomagnification" of OPFR metabolites might be attributed to the biotransformation of OPFRs in organisms at high trophic levels.


Subject(s)
Flame Retardants , Food Chain , Animals , Flame Retardants/analysis , Bioaccumulation , Rivers , Organophosphates , China , Phosphates , Environmental Monitoring
15.
Sci Total Environ ; 869: 161839, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36709905

ABSTRACT

Atmospheric microplastics (AMPs) have raised much concern for public health due to their potential for exposure. In this study, temporal distribution, characteristics and exposure risk of AMPs were studied in the urban area of Guangzhou, a metropolis in Southern China, and the washout effect of rainfall on AMPs was investigated. It was found that AMP abundances in Guangzhou were in a range of 0.01-0.44 items/m3, with higher abundance in the wet season (0.19 ± 0.01 items/m3) than in the dry season (0.15 ± 0.02 items/m3). The distribution of AMPs did not correspond to that of common air pollutants (e.g., PM2.5 and PM10), implying that their pollution sources might be distinct. In Guangzhou, a total of 1.26 × 1011 items AMPs are in the air every year, and annual inhalation exposure of adults was estimated to be in the range of 79.65-3.50 × 103 items. The annual deposition flux of AMPs is 65.94 ± 7.53 items/m2/d, and the deposition flux in the wet season (84.00 ± 6.95 items/m2/d) was much greater than that in the dry season (47.88 ± 8.35 items/m2/d). Furthermore, rainfall has an effective mechanism for removing AMPs from the atmosphere, with an average washout ratio of (19.39 ± 6.48) × 104 for rainfall washing AMPs out. Compared to moderate rain (2.5-10 mm/h) and heavy rain (10-50 mm/h), light rain (rainfall intensity <2.5 mm/h) had a better washout effect. This study contributes to the evaluation of AMP exposure risk and understanding of AMP environmental behavior and fate by providing long-term monitoring data on AMPs and quantifying the washout effect of rainfall on AMPs for the first time.


Subject(s)
Air Pollutants , Microplastics , Plastics , Air Pollutants/analysis , Atmosphere , China , Rain , Environmental Monitoring
16.
Environ Pollut ; 322: 121158, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36716949

ABSTRACT

In recent years, microplastics (MPs) as emerging carriers for environmental pollutants have attracted increasing worldwide attention. However, the adsorption of heavy metals on MPs, especially for biodegradable MPs, has been still poorly understood in estuarine environments. In this study, we investigated the aging of biodegradable and conventional MPs in the Pearl River Estuary after long-term exposure and their impacts on the adsorption of heavy metals from seawater. The results showed that the changes in surface characteristics were more prominent on biodegradable MPs than on conventional MPs after aging. Both biodegradable and conventional MPs could adsorb heavy metals, and their adsorption capacities fluctuated greatly on different MPs and different exposure times. The adsorption capacities of Cu, Pb, and As on biodegradable MPs were higher than those on conventional MPs, whereas Mn, Cr, and Co had lower adsorption on biodegradable MPs after 9-12 months by inductively coupled plasma-mass spectrometry (ICP-MS). The aging characteristics (CI, O/C, and Xc) of MPs accounted for a contribution of 51.0% on heavy metal adsorption, while the environmental factors (temperature, salinity, pH, and heavy metal concentration) only contributed to 13.2%. Therefore, the present study can provide important evidence on the environmental behaviors and ecological risks of biodegradable and conventional MPs in estuarine systems.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Microplastics/chemistry , Plastics , Adsorption , Rivers , Estuaries , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , China
17.
Environ Pollut ; 318: 120920, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36565907

ABSTRACT

The production and use of hexabromocyclododecanes (HBCDs) have been strictly limited due to their persistence, toxicity and bioaccumulation. However, the release of HBCDs from related products and wastes would continue for a long time, which may cause many environmental problems. In this study, we investigated the occurrence and distribution of HBCDs and microplastics (MPs) in aquatic organisms inhabiting different substrates. HBCDs were measurable in the seawater, sediment, expanded polystyrene (EPS) substrates and organism samples. Mostly, the concentrations of HBCDs in organisms inhabiting EPS buoys were significantly higher than those of the same species inhabiting other substrates. Meanwhile, the diastereomeric ratio (α/γ) of HBCDs in organisms inhabiting EPS buoys was closer to that in EPS buoys. The fugacity values of HBCDs in EPS buoys were much higher than those in other media, implying that HBCDs can be transferred from EPS buoys to other media. Additionally, MPs derived from EPS buoys would be mistaken as food and ingested by aquatic organisms. The transfer of HBCDs from EPS buoys to aquatic organisms can be achieved by aqueous and dietary exposures. In combination, the contribution of MP ingestion to HBCDs for aquatic organisms should be very limited. These results supported EPS buoys as an important source of HBCDs for the aquatic ecosystem. To effectively control HBCDs pollution, it is necessary to discontinue or reduce the use of EPS buoys.


Subject(s)
Hydrocarbons, Brominated , Water Pollutants, Chemical , Polystyrenes/analysis , Ecosystem , Plastics , Environmental Monitoring , Hydrocarbons, Brominated/analysis , Aquatic Organisms , Water Pollutants, Chemical/analysis
18.
Mar Pollut Bull ; 186: 114399, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495611

ABSTRACT

Microplastics are recognized as a newly emerging threat to marine organisms as they can be ingested and accumulated through multiple trophic levels. However, microplastic contamination and its potential risk assessment in coral reef fishes have been less addressed, particularly in remote ocean regions. In this study, microplastics in 167 samples of coral reef fish (a total of eighteen species) from the Xisha areas of the South China Sea were studied. There were fifteen species of coral reef fish contaminated by microplastics with an average occurrence rate of 29.3 %. The shape of microplastics in the fishes was mostly fibrous with small sizes (400-900 µm) and light colors (transparent and blue). The dominant types of microplastic polymers are polyamide and polyethylene terephthalate, accounting for 77 % and 11 % of microplastics in the fish body. There were generally more microplastics in the herbivorous fishes than the carnivorous ones. The highest microplastic abundance and occurrence was found in parrotfish due to its direct feeding on the microplastics-contaminated corals. In addition, there were much more microplastics in the gastrointestinal tracts than in the gills of the Xisha fishes. Microplastic abundance was found negatively correlated with the trophic level of the Xisha fishes supporting a stronger microplastic impact at lower levels of marine animals. Finally, a risk assessment using the polymer hazard index (PHI) revealed that microplastic contamination in the Xisha fishes was lower than those in the eutrophic coast. Our study provides new evidence for the widespread presence of microplastic contamination in the fishes of the remote Xisha coral reefs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Coral Reefs , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers , Fishes , China
19.
Sci Total Environ ; 841: 156749, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35718172

ABSTRACT

Microplastic contamination is an emerging global threat for various marine organisms. Marine invertebrates such as bivalve mollusks are more susceptible to the widespread presence of microplastics due to their limited abilities to escape from pollution exposure and they can readily ingest environmental pollutants like microplastics through their filter-feeding behaviors. In this study, microplastic contamination in bivalves related to species, spatial, and temporal variability were conducted. Results showed that the frequency of microplastic occurrence varied from 86.7 % to 93.3 % in six species of bivalves, and the average abundance of microplastics ranged from 3.5 to 8.6 items per individual or from 0.2 to 3.1 items per gram tissues wet weight. No significant difference was observed in microplastic abundances of bivalves collected from different research regions and sampling seasons. However, the sediment-dwelling bivalves had higher microplastics abundances than the water-dwelling bivalves. Microplastic features with various shapes, colors, sizes, and polymer types detected in bivalves were similar with those in seawater and sediment environments that they are living in. The potential risk assessment of microplastics in bivalves basing on polymer hazard index (PHI) was in the risk levels of II-III, implying that microplastic contamination in bivalves may pose health risk to human via seafood consumption.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Aquatic Organisms , Bays , Environmental Monitoring/methods , Humans , Microplastics , Plastics , Water Pollutants, Chemical/analysis
20.
Mar Pollut Bull ; 179: 113744, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35580442

ABSTRACT

Discarded plastic bag is a main component of marine debris, posing potential threats to marine biota. This study was conducted to assess the potential effects of microplastics on juvenile Lates calcarifer. Fish were exposed via diet to two microplastic types from conventional polyethylene (PE) and biodegradable (Bio) plastic bags for 21 days. Antioxidative enzymes activity, intestinal microbiome and proteome were determined. PE and Bio microplastics were found to accumulate in gastrointestinal tracts, and no mortality was observed. Microplastics exposure did not induce significant antioxidant response except for the glutathione reductase (GR) modulation. Intestinal microbiome diversity decreased significantly in PE group based on Simpson index. Both types of microplastics induced proteome modulation by down-regulating proteins associated with immune homeostasis. Bio microplastics maintained higher intestinal microbial diversity and induced more proteins alteration than PE microplastics. This study provides toxicological insights into the impacts of conventional and biodegradable microplastics on juvenile L. calcarifer.


Subject(s)
Microbiota , Perciformes , Water Pollutants, Chemical , Animals , Antioxidants , Bioaccumulation , Microplastics , Plastics , Polyethylene , Proteome , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...