Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.147
Filter
1.
J Med Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837951

ABSTRACT

Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position. Recently, new inhibitors have been developed to overcome such mutations; however, mutations activating other pathways (and/or other targets) have subsequently emerged on occasion. Here, we systematically summarize the secondary mutations that confer resistance to type II inhibitors, the structural basis for resistance, newer inhibitors designed to overcome resistance, as well as the challenges and opportunities for the development of new inhibitors to overcome secondary kinase domain mutations.

2.
Arthrosc Tech ; 13(5): 102966, 2024 May.
Article in English | MEDLINE | ID: mdl-38835442

ABSTRACT

As an important structure for maintaining the hoop tension of the medial meniscus of the knee joint, the posterior root is receiving increasing attention. Medial meniscus posterior root tear is an important reason for the occurrence, development, and kinematics changes of knee osteoarthritis. It is necessary to repair the posterior root of meniscus for restoring joint kinematics and improving clinical efficacy. This Technical Note reports a medial meniscus posterior root tear repair technique using arthroscopic transtibial pullout repair (ATPR) combined with tibial condylar valgus osteotomy. The aim of this technique is to repair the posterior root of the medial meniscus while correcting the force line through osteotomy, opening the joint gap, improving the joint surface fit, providing a good mechanical environment for meniscus repair, thereby improving the healing rate of the posterior root of the meniscus and reducing the risk of retear. Although clinical evidence is currently limited, we believe that this technology may have more clinical advantages compared with ATPR alone or ATPR combined with high tibial osteotomy.

4.
Front Public Health ; 12: 1348285, 2024.
Article in English | MEDLINE | ID: mdl-38756894

ABSTRACT

Introduction: With increased life expectancy in the Chinese population coupled with chronic disease the care needs of people at the end of life are attracting much attention. Home hospice care can help the dying older adult achieve comfort and maintain their dignity at home. However, dying at home means great responsibility and challenge for family caregivers, and there are many unmet needs. The study aimed to investigate the home hospice care needs of family caregivers of older adult people with chronic diseases at the end of life in China, and to analyze the influencing factors of home hospice care needs of caregivers. Methods: In this cross-sectional study, from May to September 2023, 4 community health service centers were selected by stratified sampling from seven administrative districts in Jinzhou City, Liaoning Province, where home hospice care was piloted. Then 224 family caregivers were selected from the communities of seven community service centers by simple random sampling method. A general information questionnaire and the home hospice care needs questionnaire developed by our research group were used to investigate. Univariate analysis was used to compare the differences in the scores of different characteristics, and the factors with significant differences were selected for multivariate linear regression analysis to determine the final influencing factors. Results: The total score of hospice care needs of family caregivers was 121.61 ± 15.24, among which the end-of-life knowledge need dimension score was 24.04 ± 2.71, the highest score index was 80.13%, while the symptom control need score was 15.58 ± 3.39, the lowest score index was 62.32%. In addition, Caregivers with caregiving experience, dying older adult with longer disease duration, and dying older adult with higher levels of education were the factors influencing the total need for home hospice care among family caregivers, with a variance explained of 22.7%. Discussion: The needs of family caregivers of the terminally ill older adult are high, and healthcare professionals should implement services to meet their multidimensional needs and improve the quality of care according to the factors affecting their needs.


Subject(s)
Caregivers , Home Care Services , Hospice Care , Humans , Cross-Sectional Studies , Caregivers/psychology , Caregivers/statistics & numerical data , China , Male , Female , Hospice Care/statistics & numerical data , Chronic Disease , Aged , Middle Aged , Home Care Services/statistics & numerical data , Surveys and Questionnaires , Terminal Care , Adult , Aged, 80 and over
5.
PLoS One ; 19(5): e0298774, 2024.
Article in English | MEDLINE | ID: mdl-38722915

ABSTRACT

OBJECTIVE: Hand osteoarthritis poses a significant health challenge globally due to its increasing prevalence and the substantial burden on individuals and the society. In current clinical practice, treatment options for hand osteoarthritis encompass a range of approaches, including biological agents, antimetabolic drugs, neuromuscular blockers, anti-inflammatory drugs, hormone medications, pain relievers, new synergistic drugs, and other medications. Despite the diverse array of treatments, determining the optimal regimen remains elusive. This study seeks to conduct a network meta-analysis to assess the effectiveness and safety of various drug intervention measures in the treatment of hand osteoarthritis. The findings aim to provide evidence-based support for the clinical management of hand osteoarthritis. METHODS: We performed a comprehensive search across PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials was conducted until September 15th, 2022, to identify relevant randomized controlled trials. After meticulous screening and data extraction, the Cochrane Handbook's risk of bias assessment tool was applied to evaluate study quality. Data synthesis was carried out using Stata 15.1 software. RESULTS: 21 studies with data for 3965 patients were meta-analyzed, involving 20 distinct Western medicine agents. GCSB-5, a specific herbal complex that mainly regulate pain in hand osteoarthritis, showed the greatest reduction in pain [WMD = -13.00, 95% CI (-26.69, 0.69)]. CRx-102, s specific medication characterized by its significant effect for relieving joint stiffness symptoms, remarkably mitigated stiffness [WMD = -7.50, 95% CI (-8.90, -6.10)]. Chondroitin sulfate displayed the highest incidence of adverse events [RR = 0.26, 95% CI (0.06, 1.22)]. No substantial variation in functional index for hand osteoarthritis score improvement was identified between distinct agents and placebo. CONCLUSIONS: In summary, GCSB-5 and CRx-102 exhibit efficacy in alleviating pain and stiffness in HOA, respectively. However, cautious interpretation of the results is advised. Tailored treatment decisions based on individual contexts are imperative.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/drug therapy , Osteoarthritis/therapy , Network Meta-Analysis , Treatment Outcome , Hand , Randomized Controlled Trials as Topic
6.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795203

ABSTRACT

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Subject(s)
Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Osteosarcoma , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Mitochondrial Permeability Transition Pore/metabolism , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Adenine Nucleotide Translocator 3/metabolism , Adenine Nucleotide Translocator 3/genetics , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Protein Binding
7.
Front Cardiovasc Med ; 11: 1400780, 2024.
Article in English | MEDLINE | ID: mdl-38803664

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.

8.
Cell Oncol (Dordr) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809326

ABSTRACT

PURPOSE: Leukaemia remains a major contributor to global mortality, representing a significant health risk for a substantial number of cancer patients. Despite notable advancements in the field, existing treatments frequently exhibit limited efficacy or recurrence. Here, we explored the potential of abolishing HVEM (herpes virus entry mediator, TNFRSF14) expression in tumours as an effective approach to treat acute lymphoblastic leukaemia (ALL) and prevent its recurrence. METHODS: The clinical correlations between HVEM and leukaemia were revealed by public data analysis. HVEM knockout (KO) murine T cell lymphoblastic leukaemia cell line EL4 were generated using CRISPR-Cas9 technology, and syngeneic subcutaneous tumour models were established to investigate the in vivo function of HVEM. Immunohistochemistry (IHC), RNA-seq and flow cytometry were used to analyse the tumour immune microenvironment (TIME) and tumour draining lymph nodes (dLNs). Immune functions were investigated by depletion of immune subsets in vivo and T cell functional assays in vitro. The HVEM mutant EL4 cell lines were constructed to investigate the functional domain responsible for immune escape. RESULTS: According to public databases, HVEM is highly expressed in patients with ALL and acute myeloid leukemia (AML) and is negatively correlated with patient prognosis. Genetic deletion of HVEM in EL4 cells markedly inhibited tumour progression and prolonged the survival of tumour-bearing mice. Our experiments proved that HVEM exerted its immunosuppressive effect by inhibiting antitumour function of CD8+ T cell through CRD1 domain both in vivo and in vitro. Additionally, we identified a combination therapy capable of completely eradicating ALL tumours, which induces immune memory toward tumour protection. CONCLUSIONS: Our study reveals the potential mechanisms by which HVEM facilitates ALL progression, and highlights HVEM as a promising target for clinical applications in relapsed ALL therapy.

10.
Eur J Obstet Gynecol Reprod Biol ; 298: 128-134, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38756052

ABSTRACT

OBJECTIVE: To determine the detection rate of chromosomal abnormalities and pregnancy outcomes in fetuses with intrauterine growth restriction. Study design A total of 151 fetal samples with intrauterine growth restriction were divided into the isolated fetal growth restriction (FGR) group, FGR group with structural malformation, and FGR group with non-structural malformation, according to ultrasound abnormalities. The enrolled patients were divided into an early onset FGR group (<32 weeks) and a late-onset FGR group (≥32 weeks). Chromosomal karyotype and microarray analyses were performed and pregnancy outcomes were monitored. Results The karyotypes of 122 patients were analyzed. Four patients exhibited abnormal chromosome numbers or structures. Variations in copy number were detected in 151 cases; 19 cases were found to have chromosomal abnormalities, with a positivity rate of 12.6 %. There was one trisomy in 18 cases, one trisomy in 21 cases, eight pathogenic copy number variations (CNVs), and nine CNVs of unknown clinical significance. The detection rate of FGR combined with structural malformation was significantly higher than that of isolated FGR group. The detection rate of FGR with structural malformations was significantly higher than that with non-structural malformations. The positive detection rate in the FGR group was similar to that in the FGR group with non-structural malformations, with no statistical significance. Chromosomal abnormalities were detected in 17 patients with early onset FGR, with a positivity rate of 13.8 %. Two cases of chromosomal abnormalities were detected in the late-onset FGR group, with a positive rate of 7.1 %, with no statistical significance. A total of 151 fetuses with FGR were followed up for pregnancy outcomes, resulting in 36 cases of pregnancy termination and 13 cases of loss to follow-up. Among the 102 delivered fetuses, six exhibited delayed growth and development, one presented with hypospadias, and another failed the hearing screening. The remaining 94 fetuses demonstrated normal growth and development. Conclusions This study confirms the value of CNV detection in fetuses and dynamic ultrasound monitoring for fetuses with intrauterine growth restriction.

11.
J Genet Genomics ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750952

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) represent a significant data gap. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of GPR160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of GPR160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Constant with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.

12.
Adv Sci (Weinh) ; : e2306912, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775007

ABSTRACT

Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.

13.
Front Aging Neurosci ; 16: 1358141, 2024.
Article in English | MEDLINE | ID: mdl-38813528

ABSTRACT

Parkinson's disease resultant in the degeneration of Dopaminergic neurons and accumulation of α-synuclein in the substantia nigra pars compacta. The synthetic therapeutics for Parkinson's disease have moderate symptomatic benefits but cannot prevent or delay disease progression. In this study, nicotine was employed by using transgenic Caenorhabditis elegans Parkinson's disease models to minimize the Parkinson's disease symptoms. The results showed that the nicotine at 100, 150, and 200 µM doses reduced degeneration of Dopaminergic neurons caused by 6-hydroxydopamine (14, 33, and 40%), lowered the aggregative toxicity of α-synuclein by 53, 56, and 78%, respectively. The reduction in food-sensing behavioral disabilities of BZ555 was observed to be 18, 49, and 86%, respectively, with nicotine concentrations of 100 µM, 150 µM, and 200 µM. Additionally, nicotine was found to enhance Daf-16 nuclear translocation by 14, 31, and 49%, and dose-dependently increased SOD-3 expression by 10, 19, and 23%. In summary, the nicotine might a promising therapy option for Parkinson's disease.

14.
J Ethnopharmacol ; 331: 118282, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38701935

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Sang Yu granule (SY), a traditional Chinese medicine prescription of Xijing Hospital, was developed based on the Guanyin powder in the classical prescription "Hong's Collection of Proven Prescriptions" and the new theory of modern Chinese medicine. It has been proved to have a certain therapeutic effect on drug-induced liver injury (DILI), but the specific mechanism of action is still unclear. AIM OF STUDY: Aim of the study was to explore the effect of SangYu granule on treating drug-induced liver injury induced by acetaminophen in mice. MATERIALS AND METHODS: The chemical composition of SY, serum, and liver tissue was analyzed using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To assess hepatic function, measurements were taken using kits for total bile acids, as well as serum AST, ALT, and ALP activity. Concentrations of IL-1ß and TNF-α in serum were quantified using ELISA kits. Transcriptome Sequencing Analysis and 2bRAD-M microbial diversity analysis were employed to evaluate gene expression variance in liver tissue and fecal microbiota diversity among different groups, respectively. Western blotting was performed to observe differences in the activation levels of FXR, SHP, CYP7A1 and PPARα in the liver, and the levels of FXR and FGF-15 genes and proteins in the ileum of mice. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to investigate the potential therapeutic effect of administering the intestinal microbial suspension from mice treated with SY on drug-induced liver injury. RESULTS: SY treatment exhibited significant hepatoprotective effects in mice, effectively ameliorating drug-induced liver injury while concurrently restoring intestinal microbial dysbiosis. Furthermore, SY administration demonstrated a reduction in the concentration of total bile acids, the expression of FXR and SHP proteins in the liver was up-regulated, CYP7A1 protein was down-regulated, and the expressions of FXR and FGF-15 proteins in the ileum were up-regulated. However, no notable impact on PPARα was observed. Furthermore, results from FMT experiments indicated that the administration of fecal suspensions derived from mice treated with SY did not yield any therapeutic benefits in the context of drug-induced liver injury. CONCLUSION: The aforementioned findings strongly suggest that SY exerts a pronounced ameliorative effect on drug-induced liver injury through its ability to modulate the expression of key proteins involved in bile acid secretion, thereby preserving hepato-enteric circulation homeostasis.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Liver , PPAR alpha , Animals , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , PPAR alpha/metabolism , Gastrointestinal Microbiome/drug effects , Fibroblast Growth Factors , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Bile Acids and Salts/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
15.
Kidney Int ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789037

ABSTRACT

Persistently elevated glycolysis in kidney has been demonstrated to promote chronic kidney disease (CKD). However, the underlying mechanism remains largely unclear. Here, we observed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key glycolytic enzyme, was remarkably induced in kidney proximal tubular cells (PTCs) following ischemia-reperfusion injury (IRI) in mice, as well as in multiple etiologies of patients with CKD. PFKFB3 expression was positively correlated with the severity of kidney fibrosis. Moreover, patients with CKD and mice exhibited increased urinary lactate/creatine levels and kidney lactate, respectively. PTCs-specific deletion of PFKFB3 significantly reduced kidney lactate levels, mitigated inflammation and fibrosis, and preserved kidney function in the IRI mouse model. Similar protective effects were observed in mice with heterozygous deficiency of PFKFB3 or those treated with a PFKFB3 inhibitor. Mechanistically, lactate derived from PFKFB3-mediated tubular glycolytic reprogramming markedly enhanced histone lactylation, particularly H4K12la, which was enriched at the promoter of NF- κB signaling genes like Ikbkb, Rela, and Relb, activating their transcription and facilitating the inflammatory response. Further, PTCs-specific deletion of PFKFB3 inhibited the activation of IKKß, I κ B α, and p65 in the IRI kidneys. Moreover, increased H4K12la levels were positively correlated with kidney inflammation and fibrosis in patients with CKD. These findings suggest that tubular PFKFB3 may play a dual role in enhancing NF- κB signaling by promoting both H4K12la-mediated gene transcription and its activation. Thus, targeting the PFKFB3-mediated NF- κB signaling pathway in kidney tubular cells could be a novel strategy for CKD therapy.

16.
Crit Rev Food Sci Nutr ; : 1-21, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783748

ABSTRACT

ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.

17.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Article in English | MEDLINE | ID: mdl-38585472

ABSTRACT

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Subject(s)
Graphite , MicroRNAs , Nanocomposites , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Circular , In Situ Hybridization, Fluorescence , Magnesium Oxide , Cells, Cultured , Bone Regeneration , Magnetic Phenomena , Cell Differentiation
18.
Front Immunol ; 15: 1368322, 2024.
Article in English | MEDLINE | ID: mdl-38558821

ABSTRACT

Introduction: Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods: Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results: The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion: The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.


Subject(s)
Glomerulonephritis, IGA , Lacticaseibacillus casei , Mice , Animals , Complement Factor H/genetics , Mice, Inbred C57BL , Glomerulonephritis, IGA/pathology , Complement System Proteins/genetics , Immunoglobulin A , Mutation
19.
Nat Prod Res ; : 1-8, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629167

ABSTRACT

Tripterygium wilfordii has been historically employed as a conventional botanical insecticide and a plant of medicinal significance. A new dihydroagarofuran sesquiterpene (1) and a new acyclic compound (2), along with seven known compounds (3-9), have been isolated from the aerial parts of Tripterygium wilfordii. The identification of the structures of novel compounds were accomplished through comprehensive spectroscopic analyses, encompassing HRESIMS, NMR, UV, IR, and a comparative analysis with spectroscopic data from compounds previously characterised. In in-vitro bioassay, compound 8 exhibited significant inhibitory activity for NO release in LPS-induced RAW 264.7 cells, with an IC50 value of 15.7 µM.

20.
J Am Soc Nephrol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687867

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear. METHODS: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells. RESULTS: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1ß. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation. CONCLUSIONS: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...