Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(6): 141, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789698

ABSTRACT

KEY MESSAGE: Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.


Subject(s)
Brassica napus , Phenotype , Quantitative Trait Loci , Seeds , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/physiology , Seeds/growth & development , Seeds/genetics , Chromosome Mapping , Hybrid Vigor , Haploidy , Gene Expression Regulation, Plant , Plant Breeding
2.
Plants (Basel) ; 13(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38498487

ABSTRACT

Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.

4.
Plant Commun ; 5(1): 100666, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37496273

ABSTRACT

Dissecting the complex regulatory mechanism of seed oil content (SOC) is one of the main research goals in Brassica napus. Increasing evidence suggests that genome architecture is linked to multiple biological functions. However, the effect of genome architecture on SOC regulation remains unclear. Here, we used high-throughput chromatin conformation capture to characterize differences in the three-dimensional (3D) landscape of genome architecture of seeds from two B. napus lines, N53-2 (with high SOC) and Ken-C8 (with low SOC). Bioinformatics analysis demonstrated that differentially accessible regions and differentially expressed genes between N53-2 and Ken-C8 were preferentially enriched in regions with quantitative trait loci (QTLs)/associated genomic regions (AGRs) for SOC. A multi-omics analysis demonstrated that expression of SOC-related genes was tightly correlated with genome structural variations in QTLs/AGRs of B. napus. The candidate gene BnaA09g48250D, which showed structural variation in a QTL/AGR on chrA09, was identified by fine-mapping of a KN double-haploid population derived from hybridization of N53-2 and Ken-C8. Overexpression and knockout of BnaA09g48250D led to significant increases and decreases in SOC, respectively, in the transgenic lines. Taken together, our results reveal the 3D genome architecture of B. napus seeds and the roles of genome structural variations in SOC regulation, enriching our understanding of the molecular mechanisms of SOC regulation from the perspective of spatial chromatin structure.


Subject(s)
Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Quantitative Trait Loci/genetics , Plant Oils/metabolism , Seeds/genetics , Chromatin/metabolism
5.
Biotechnol Biofuels Bioprod ; 16(1): 88, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221547

ABSTRACT

BACKGROUND: Increasing seed oil content is the most important breeding goal in Brassica napus, and phenotyping is crucial to dissect its genetic basis in crops. To date, QTL mapping for oil content has been based on whole seeds, and the lipid distribution is far from uniform in different tissues of seeds in B. napus. In this case, the phenotype based on whole seeds was unable to sufficiently reveal the complex genetic characteristics of seed oil content. RESULTS: Here, the three-dimensional (3D) distribution of lipid was determined for B. napus seeds by magnetic resonance imaging (MRI) and 3D quantitative analysis, and ten novel oil content-related traits were obtained by subdividing the seeds. Based on a high-density genetic linkage map, 35 QTLs were identified for 4 tissues, the outer cotyledon (OC), inner cotyledon (IC), radicle (R) and seed coat (SC), which explained up to 13.76% of the phenotypic variation. Notably, 14 tissue-specific QTLs were reported for the first time, 7 of which were novel. Moreover, haplotype analysis showed that the favorable alleles for different seed tissues exhibited cumulative effects on oil content. Furthermore, tissue-specific transcriptomes revealed that more active energy and pyruvate metabolism influenced carbon flow in the IC, OC and R than in the SC at the early and middle seed development stages, thus affecting the distribution difference in oil content. Combining tissue-specific QTL mapping and transcriptomics, 86 important candidate genes associated with lipid metabolism were identified that underlie 19 unique QTLs, including the fatty acid synthesis rate-limiting enzyme-related gene CAC2, in the QTLs for OC and IC. CONCLUSIONS: The present study provides further insight into the genetic basis of seed oil content at the tissue-specific level.

6.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901901

ABSTRACT

Meiotic recombination not only maintains the stability of the chromosome structure but also creates genetic variations for adapting to changeable environments. A better understanding of the mechanism of crossover (CO) patterns at the population level is useful for crop improvement. However, there are limited cost-effective and universal methods to detect the recombination frequency at the population level in Brassica napus. Here, the Brassica 60K Illumina Infinium SNP array (Brassica 60K array) was used to systematically study the recombination landscape in a double haploid (DH) population of B. napus. It was found that COs were unevenly distributed across the whole genome, and a higher frequency of COs existed at the distal ends of each chromosome. A considerable number of genes (more than 30%) in the CO hot regions were associated with plant defense and regulation. In most tissues, the average gene expression level in the hot regions (CO frequency of greater than 2 cM/Mb) was significantly higher than that in the regions with a CO frequency of less than 1 cM/Mb. In addition, a bin map was constructed with 1995 recombination bins. For seed oil content, Bin 1131 to 1134, Bin 1308 to 1311, Bin 1864 to 1869, and Bin 2184 to 2230 were identified on chromosomes A08, A09, C03, and C06, respectively, which could explain 8.5%, 17.3%, 8.6%, and 3.9% of the phenotypic variation. These results could not only deepen our understanding of meiotic recombination in B. napus at the population level, and provide useful information for rapeseed breeding in the future, but also provided a reference for studying CO frequency in other species.


Subject(s)
Brassica napus , Brassica napus/genetics , Chromosome Mapping/methods , Quantitative Trait Loci , Haploidy , Plant Breeding , Genome, Plant
7.
Chem Sci ; 14(12): 3370-3376, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970077

ABSTRACT

CO2-responsive emulsions have attracted considerable attention in recent years because of their biocompatibility and easy removal of CO2. However, most CO2-responsive emulsions are only used in stabilization and demulsification processes. In this paper, we report CO2-switchable oil-in-dispersion (OID) emulsions co-stabilized with silica nanoparticles and anionic NCOONa, in which the required concentrations of NCOONa and silica particles were as low as 0.01 mM and 0.0001 wt%, respectively. Besides reversible emulsification/demulsification, the aqueous phase containing the emulsifiers was recycled and reused with the CO2/N2 trigger. More importantly, the properties of the emulsions, such as droplet sizes (40-1020 µm) and viscosities (6-2190 Pa s), were intelligently controlled by the CO2/N2 trigger, and meanwhile reversible conversion between OID emulsions and Pickering emulsions was achieved. The present method offers a green and sustainable way to regulate the emulsion states, which enables smart control of emulsions and widens their potential applications.

8.
Biotechnol Biofuels Bioprod ; 15(1): 83, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962411

ABSTRACT

BACKGROUND: Increasing seed oil content (SOC) of Brassica napus has become one of the main plant breeding goals over the past decades. Lysophosphatidic acid acyltransferase (LPAT) performs an important molecular function by regulating the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane and storage lipids. However, the mechanism underlying the effect of LPAT on the SOC of B. napus remains unclear. RESULTS: In the present study, significant elevation of SOC was achieved by overexpressing BnLPAT2 and BnLPAT5 in B. napus. RNAi and CRISPR-Cas9 were also successfully used to knock down and knock out these two genes in B. napus where SOC significantly decreased. Meanwhile, we found an accumulation of lipid droplets and oil bodies in seeds of BnLPAT2 and BnLPAT5 overexpression lines, whereas an increase of sugar and protein in Bnlpat2 and Bnlpat5 mutant seeds. Sequential transcriptome analysis was further performed on the developing seeds of the BnLPAT2 and BnLPAT5 overexpression, knockdown, and knockout rapeseed lines. Most differentially expressed genes (DEGs) that were expressed in the middle and late stages of seed development were enriched in photosynthesis and lipid metabolism, respectively. The DEGs involved in fatty acid and lipid biosynthesis were active in the overexpression lines but were relatively inactive in the knockdown and knockout lines. Further analysis revealed that the biological pathways related to fatty acid/lipid anabolism and carbohydrate metabolism were specifically enriched in the BnLPAT2 overexpression lines. CONCLUSIONS: BnLPAT2 and BnLPAT5 are essential for seed oil accumulation. BnLPAT2 preferentially promoted diacylglycerol synthesis to increase SOC, whereas BnLPAT5 tended to boost PA synthesis for membrane lipid generation. Taken together, BnLPAT2 and BnLPAT5 can jointly but differently promote seed oil accumulation in B. napus. This study provides new insights into the potential mechanisms governing the promotion of SOC by BnLPAT2 and BnLPAT5 in the seeds of B. napus.

9.
Theor Appl Genet ; 135(9): 2969-2991, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841418

ABSTRACT

KEY MESSAGE: The QTL hotspots determining seed glucosinolate content instead of only four HAG1 loci and elucidation of a potential regulatory model for rapeseed SGC variation. Glucosinolates (GSLs) are amino acid-derived, sulfur-rich secondary metabolites that function as biopesticides and flavor compounds, but the high seed glucosinolate content (SGC) reduces seed quality for rapeseed meal. To dissect the genetic mechanism and further reduce SGC in rapeseed, QTL mapping was performed using an updated high-density genetic map based on a doubled haploid (DH) population derived from two parents that showed significant differences in SGC. In 15 environments, a total of 162 significant QTLs were identified for SGC and then integrated into 59 consensus QTLs, of which 32 were novel QTLs. Four QTL hotspot regions (QTL-HRs) for SGC variation were discovered on chromosomes A09, C02, C07 and C09, including seven major QTLs that have previously been reported and four novel major QTLs in addition to HAG1 loci. SGC was largely determined by superimposition of advantage allele in the four QTL-HRs. Important candidate genes directly related to GSL pathways were identified underlying the four QTL-HRs, including BnaC09.MYB28, BnaA09.APK1, BnaC09.SUR1 and BnaC02.GTR2a. Related differentially expressed candidates identified in the minor but environment stable QTLs indicated that sulfur assimilation plays an important rather than dominant role in SGC variation. A potential regulatory model for rapeseed SGC variation constructed by combining candidate GSL gene identification and differentially expressed gene analysis based on RNA-seq contributed to a better understanding of the GSL accumulation mechanism. This study provides insights to further understand the genetic regulatory mechanism of GSLs, as well as the potential loci and a new route to further diminish the SGC in rapeseed.


Subject(s)
Brassica napus , Brassica rapa , Amino Acids/metabolism , Biological Control Agents/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Brassica rapa/genetics , Glucosinolates/genetics , RNA-Seq , Seeds/genetics , Seeds/metabolism , Sulfur
10.
Plant Mol Biol ; 110(1-2): 53-68, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35723867

ABSTRACT

KEY MESSAGE: The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.


Subject(s)
Arabidopsis , Brassica napus , Anthocyanins , Arabidopsis/genetics , Brassica napus/genetics , Brassica napus/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Int J Mol Sci ; 23(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35562871

ABSTRACT

Lodging is one of the main reasons for the reduction in seed yield and is the limitation of mechanized harvesting in B. napus. The dissection of the regulatory mechanism of lodging resistance is an important goal in B. napus. In this study, the lodging resistant B. napus line, YG689, derived from the hybridization between B. napus cv. Zhongyou 821 (ZY821) and Capsella bursa-pastoris, was used to dissect the regulation mechanism of hard stem formation by integrating anatomical structure, transcriptome and metabolome analyses. It was shown that the lignocellulose content of YG689 is higher than that of ZY821, and some differentially expressed genes (DEGs) involved in the lignocellulose synthesis pathway were revealed by transcriptome analyses. Meanwhile, GC-TOF-MS and UPLC-QTOF-MS identified 40, 54, and 31 differential metabolites in the bolting stage, first flower stage, and the final flower stage. The differential accumulation of these metabolites might be associated with the lignocellulose biosynthesis in B. napus. Finally, some important genes that regulate the metabolic pathway of lignocellulose biosynthesis, such as BnaA02g18920D, BnaA10g15590D, BnaC05g48040D, and NewGene_216 were identified in B. napus through the combination of transcriptomics and metabolomics data. The present results explored the potential regulatory mechanism of lignocellulose biosynthesis, which provided a new clue for the breeding of B. napus with lodging resistance in the future.


Subject(s)
Brassica napus , Capsella , Brassica napus/genetics , Brassica napus/metabolism , Capsella/genetics , Gene Expression Regulation, Plant , Metabolome , Plant Breeding , Transcriptome
12.
Front Plant Sci ; 13: 862363, 2022.
Article in English | MEDLINE | ID: mdl-35360294

ABSTRACT

Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.

13.
Theor Appl Genet ; 135(4): 1293-1305, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35084514

ABSTRACT

KEY MESSAGE: A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus. The yellow-seed trait (YST) has always been a main breeding objective for rapeseed because yellow-seeded B. napus generally contains higher oil contents, fewer pigments and polyphenols and lower fiber content than black-seeded B. napus, although the mechanism controlling this correlation remains unclear. In this study, QTL mapping was implemented for YST based on a KN double haploid population derived from the hybridization of yellow-seeded B. napus N53-2 with a high oil content and black-seeded Ken-C8 with a relatively low oil content. Ten QTLs were identified, including four stable QTLs that could be detected in multiple environments. A major QTL, cqSC-A09, on chromosome A09 was identified by both QTL mapping and BSR-Seq technology, and explained more than 41% of the phenotypic variance. The major QTL cqSC-A09 for YST not only controls the seed color but also affects the oil and fiber contents in seeds. More importantly, the advantageous allele could increase the oil content and reduce the pigment and fiber content at the same time. This is the first QTL reported to control seed color, oil content and fiber content simultaneously with a large effect and has great application value for breeding high oil varieties with high seed quality. Important candidate genes, including BnaA09. JAZ1, BnaA09. GH3.3 and BnaA09. LOX3, were identified for cqSC-A09 by combining sequence variation annotation, expression differences and an interaction network, which lays a foundation for further cloning and breeding applications in the future.


Subject(s)
Brassica napus , Brassica napus/genetics , Brassica napus/metabolism , Chromosomes , Dietary Fiber/metabolism , Plant Breeding , Quantitative Trait Loci , Seeds/genetics , Seeds/metabolism
14.
Front Plant Sci ; 13: 1098820, 2022.
Article in English | MEDLINE | ID: mdl-36618649

ABSTRACT

Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) proteins are the enzymes that involved in auxin biosynthesis pathway. The TAA1/TAR gene family has been systematically characterized in several plants but has not been well reported in Brassica napus. In the present study, a total of 102 BnTAR genes with different number of introns were identified. It was revealed that these genes are distributed unevenly and occurred as clusters on different chromosomes except for A4, A5, A10 and C4 in B. napus. Most of the these BnTAR genes are conserved despite of existing of gene loss and gene gain. In addition, the segmental replication and whole-genome replication events were both play an important role in the BnTAR gene family formation. Expression profiles analysis indicated that the expression of BnTAR gene showed two patterns, part of them were mainly expressed in roots, stems and leaves of vegetative organs, and the others were mainly expressed in flowers and seeds of reproductive organs. Further analysis showed that many of BnTAR genes were located in QTL intervals of oil content or seed weight, for example BnAMI10 was located in cqOC-C5-4 and cqSW-A2-2, it indicated that some of the BnTAR genes might have relationship with these two characteristics. This study provides a multidimensional analysis of the TAA1/TAR gene family and a new insight into its biological function in B. napus.

15.
BMC Genomics ; 21(1): 765, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33148177

ABSTRACT

BACKGROUND: Cytoplasmic male sterility (CMS) is very important in hybrid breeding. The restorer-of-fertility (Rf) nuclear genes rescue the sterile phenotype. Most of the Rf genes encode pentatricopeptide repeat (PPR) proteins. RESULTS: We investigated the restorer-of-fertility-like (RFL) gene family in Brassica napus. A total of 53 BnRFL genes were identified. While most of the BnRFL genes were distributed on 10 of the 19 chromosomes, gene clusters were identified on chromosomes A9 and C8. The number of PPR motifs in the BnRFL proteins varied from 2 to 19, and the majority of BnRFL proteins harbored more than 10 PPR motifs. An interaction network analysis was performed to predict the interacting partners of RFL proteins. Tissue-specific expression and RNA-seq analyses between the restorer line KC01 and the sterile line Shaan2A indicated that BnRFL1, BnRFL5, BnRFL6, BnRFL8, BnRFL11, BnRFL13 and BnRFL42 located in gene clusters on chromosomes A9 and C8 were highly expressed in KC01. CONCLUSIONS: In the present study, identification and gene expression analysis of RFL gene family in the CMS system were conducted, and seven BnRFL genes were identified as candidates for the restorer genes in Shaan2A CMS. Taken together, this method might provide new insight into the study of Rf genes in other CMS systems.


Subject(s)
Brassica napus , Brassica napus/genetics , Cytoplasm/genetics , Fertility , Plant Breeding , Plant Infertility/genetics
16.
Front Plant Sci ; 11: 629970, 2020.
Article in English | MEDLINE | ID: mdl-33633753

ABSTRACT

Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion-deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.

17.
Appl Opt ; 58(28): 7688-7692, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31674449

ABSTRACT

In order to realize the function of subdiffraction focusing using a single flat lens, a special metalens is proposed to modulate the circularly polarized light. Initially, the analyses indicate that the phase shift can cover [0,2π] by changing the rotation angle of a quadrangular-frustum pyramid-shaped structure from 0° to 180°, while the average amplitude transmittance can reach 96% at the wavelength of λ=1550 nm. Then, a flat metalens is designed by carefully arranging the quadrangular-frustum pyramid-shaped structures. The simulated results show that a focal spot could be obtained at the focal length of about f=2.87λ, and the focusing efficiency is ∼14.9%. Meanwhile, the full width at half maximum (FWHM) of the focusing spot is only 0.48λ, which is smaller than the diffraction limit. Furthermore, this designed metalens can function comparatively with a conventional lens in one-to-one imaging.

18.
Front Plant Sci ; 10: 1152, 2019.
Article in English | MEDLINE | ID: mdl-31616451

ABSTRACT

Rapeseed is one of the most important oilseed crops in the world. Improving the production of rapeseed is beneficial to relieve the shortage of edible vegetable oil. As the organ of support and transport, the main stem of rapeseed controls the plant architecture, transports the water and nutrients, and determines the number of inflorescence. Increasing the number of main stems would be helpful for the yield improvement in Brassica napus (B. napus). This attractive multi-main stem (MMS) trait was observed in the KN DH population. We investigated not only the frequency of MMS traits but also dissected the genetic basis with QTL mapping analysis and Gene-Fishing technique. A total of 43 QTLs were identified for MMS based on high-density linkage map, which explained 2.95-14.9% of the phenotypic variation, among which two environmental stable QTLs (cqMMS.A3-2 and cqMMS.C3-5) were identified in winter and semi-winter environments. Epistatic interaction analysis indicated cqMMS.C3-5 was an important loci for MMS. According to the functional annotation, 159 candidate genes within QTL confidence intervals, corresponding to 148 Arabidopsis thaliana (A. thaliana) homologous genes, were identified, which regulated lateral bud development and tiller of stem, such as shoot meristemless (STM), WUSCHEL-regulated-related genes, cytokinin response factors (CRF5), cytokinin oxidase (CKX4), gibberellin-regulated (RDK1), auxin-regulated gene (ARL, IAR4), and auxin-mediated signaling gene (STV1). Based on Gene-Fishing analysis between the natural plants and the double-main stem (DMS) plant, 31 differentially expressed genes (DEGs) were also obtained, which were related to differentiation and formation of lateral buds, biotic stimulus, defense response, drought and salt-stress responses, as well as cold-response functional genes. In addition, by combining the candidate genes in QTL regions with the DEGs that were obtained by Gene-Fishing technique, six common candidate genes (RPT2A, HLR, CRK, LRR-RLK, AGL79, and TCTP) were identified, which might probably be related to the formation of MMS phenotype. The present results not only would give a new insight into the genetic basis underlying the regulation of MMS but also would provide clues for plant architecture breeding in rapeseed.

19.
Theor Appl Genet ; 132(6): 1761-1775, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30830267

ABSTRACT

KEY MESSAGE: QTL mapping for fiber-related traits and elucidation of a stable and novel QTL affecting seed lignin content, cellulose content and seed oil content. Dissection of the genetic networks for fiber biosynthesis is important for improving the seed oil content and meal value of Brassica napus. In this study, the genetic basis of seed fiber biosynthesis in B. napus was investigated via quantitative trait locus (QTL) analysis using a doubled haploid population derived from 'KenC-8' crossed with 'N53-2.' Seed lignin content (LC), cellulose content (CC) and hemicellulose content (HC) were significantly negatively correlated with seed oil content (OC). Co-localization QTLs among LC, CC, HC and OC on A09 were found with contributions ranging from 9.87 to 48.50%. Seven co-localization QTLs involved in the fiber component and OC were further verified by bulked segregant analysis (BSA). The unique QTL uqA9-12 might be a real and new QTL that was commonly identified by QTL mapping and BSA and simultaneously affected LC, CC and OC with opposite additive effects. A potential regulatory network controlling seed fiber biosynthesis was constructed to dissect the complex mechanism of seed fiber and oil accumulation, and numerous candidate genes were identified in the fiber-related QTL regions. These results provided an enrichment of QTLs and potential candidates for fiber biosynthesis, as well as useful new information for understanding the complex genetic mechanism underlying rapeseed seed fiber accumulation.


Subject(s)
Brassica napus/genetics , Cellulose/analysis , Gene Regulatory Networks , Genome, Plant , Plant Proteins/metabolism , Quantitative Trait Loci , Seeds/metabolism , Brassica napus/metabolism , Genetic Linkage , Phenotype , Plant Proteins/genetics , Seeds/chemistry
20.
Eur J Hum Genet ; 16(6): 759-61, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18270535

ABSTRACT

Herbert et al reported association with obesity of a common DNA variant rs7566605 at 10 kb upstream of the INSIG2 gene. We analyzed rs7566605 polymorphism in 3125 Chinese in a cross-sectional study. We found no significant association of rs7566605 polymorphism with body mass index (BMI) and waist circumference among all participants (P=0.52). However, if geographic location is considered, the C/C genotype of rs7566605 was marginally associated with increased levels of BMI and risk of obesity among individuals living in Shanghai (P=0.06), indicating that the C/C genotype may contribute to obesity in certain subpopulation among Chinese under certain environmental settings.


Subject(s)
Body Weight/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Polymorphism, Genetic , Aged , Body Mass Index , China , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Obesity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...