Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Radiat Oncol ; 19(1): 39, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509540

ABSTRACT

BACKGROUND: At present, the implementation of intensity-modulated radiation therapy (IMRT) treatment planning for geometrically complex nasopharyngeal carcinoma (NPC) through manual trial-and-error fashion presents challenges to the improvement of planning efficiency and the obtaining of high-consistency plan quality. This paper aims to propose an automatic IMRT plan generation method through fluence prediction and further plan fine-tuning for patients with NPC and evaluates the planning efficiency and plan quality. METHODS: A total of 38 patients with NPC treated with nine-beam IMRT were enrolled in this study and automatically re-planned with the proposed method. A trained deep learning model was employed to generate static field fluence maps for each patient with 3D computed tomography images and structure contours as input. Automatic IMRT treatment planning was achieved by using its generated dose with slight tightening for further plan fine-tuning. Lastly, the plan quality was compared between automatic plans and clinical plans. RESULTS: The average time for automatic plan generation was less than 4 min, including fluence maps prediction with a python script and automated plan tuning with a C# script. Compared with clinical plans, automatic plans showed better conformity and homogeneity for planning target volumes (PTVs) except for the conformity of PTV-1. Meanwhile, the dosimetric metrics for most organs at risk (OARs) were ameliorated in the automatic plan, especially Dmax of the brainstem and spinal cord, and Dmean of the left and right parotid glands significantly decreased (P < 0.05). CONCLUSION: We have successfully implemented an automatic IMRT plan generation method for patients with NPC. This method shows high planning efficiency and comparable or superior plan quality than clinical plans. The qualitative results before and after the plan fine-tuning indicates that further optimization using dose objectives generated by predicted fluence maps is crucial to obtain high-quality automatic plans.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk , Nasopharyngeal Neoplasms/radiotherapy
2.
Cancer Lett ; 589: 216836, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556105

ABSTRACT

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Interferons , Neoplastic Syndromes, Hereditary , Animals , Mice , Humans , Interferons/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Microsatellite Instability , Deubiquitinating Enzymes/genetics , Interferon Regulatory Factor-3/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
3.
Anim Nutr ; 16: 147-157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357574

ABSTRACT

This study evaluated the effects of flavonoids from mulberry leaves (FML) on plasma biochemical indices, serum activities of lipid metabolism-related enzymes, fat morphology, fatty acid composition, and lipid metabolism in different adipose tissues of finishing pigs. We used 120 Chinese hybrid barrows of Berkshire and Bama mini-pigs with an average initial body weight of 45.11 ± 4.23 kg. The pigs were randomly assigned to five treatment groups and fed a control diet based on corn, soybean meal, and wheat bran or a control diet supplemented with 0.02%, 0.04%, 0.08%, or 0.16% FML. Each experimental group had six replicates (pens), with four pigs per pen. After a 7-d adaptation period, the feeding trial was conducted for 58 d. Blood and adipose tissue samples were collected from 30 pigs (one pig per pen) at the end of the test. The results showed that FML supplementation significantly decreased the feed intake to body gain ratio, the plasma concentrations of total cholesterol and free fatty acids, and the serum activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (linear or quadratic effects, P < 0.05), and decreased the plasma triglyceride concentration (quadratic, P = 0.07). Increasing FML supplementation increased the average daily gain and serum activities of lipoprotein lipase (linear and quadratic effects, P < 0.05) and adipose triglyceride lipase (linear, P < 0.05). Dietary FML supplementation decreased the adipocyte area in the dorsal subcutaneous adipose (DSA) tissue of finishing pigs (linear, P = 0.05) and increased the adipocyte area in the visceral adipose tissue (quadratic, P < 0.01). Increasing FML supplementation decreased the C20:1 content in DSA, abdominal subcutaneous adipose, and visceral adipose tissues of finishing pigs (P < 0.05) and increased the C18:3n3 and n-3 PUFA contents (P < 0.05). The lipid metabolism genes were regulated by the PPARγ-LXRα-ABCA1 signaling pathway, and their expressions differed in different adipose tissues. These findings suggest that FML improved growth performance, regulated lipid metabolism, inhibited fat production, and improved fatty acid distribution in the adipose tissue of finishing pigs, thereby improving pig fat's nutritional quality and health value.

4.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403351

ABSTRACT

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , rhoC GTP-Binding Protein/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Matrix Metalloproteinase 9/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Sorafenib , Mice, Nude , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Cell Movement , Cell Proliferation
5.
Autophagy ; 20(2): 275-294, 2024 02.
Article in English | MEDLINE | ID: mdl-37656054

ABSTRACT

Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.


Subject(s)
Autophagy , Rhabdoviridae , Autophagy/genetics , Viral Proteins/metabolism , Plants/metabolism , Green Fluorescent Proteins , Glycoproteins/pharmacology , Rhabdoviridae/genetics , Rhabdoviridae/metabolism , Antiviral Agents/pharmacology
6.
Front Genet ; 14: 1234757, 2023.
Article in English | MEDLINE | ID: mdl-37662841

ABSTRACT

Fat deposition is an economically important trait in pigs. Ningxiang pig, one of the four famous indigenous breeds in China, is characterized by high fat content. The underlying gene expression pattern in different developmental periods of backfat tissue remains unclear, and the purpose of this investigation is to explore the potential molecular regulators of backfat tissue development in Ningxiang pigs. Backfat tissue (three samples for each stage) was initially collected from different developmental stages (60, 120, 180, 240, 300, and 360 days after birth), and histological analysis and RNA sequencing (RNA-seq) were then conducted. Fragments per kilobase of transcript per million (FPKM) method was used to qualify gene expressions, and differentially expressed genes (DEGs) were identified. Furthermore, strongly co-expressed genes in modules, which were named by color, were clustered by Weighted gene co-expression network analysis (WGCNA) based on dynamic tree cutting algorithm. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment were subsequently implemented, and hub genes were described in each module. Finally, QPCR analysis was employed to validate RNA-seq data. The results showed that adipocyte area increased and adipocyte number decreased with development of backfat tissue. A total of 1,024 DEGs were identified in five comparison groups (120 days vs. 60 days, 180 days vs. 120 days, 240 days vs. 180 days, 300 days vs. 240 days, and 360 days vs. 300 days). The turquoise, red, pink, paleturquoise, darkorange, and darkgreen module had the highest correlation coefficient with 60, 120, 180, 240, 300, and 360 days developmental stage, while the tan, black and turquoise module had strong relationship with backfat thickness, adipocyte area, and adipocyte number, respectively. Thirteen hub genes (ACSL1, ACOX1, FN1, DCN, CHST13, COL1A1, COL1A2, COL6A3, COL5A1, COL14A1, OAZ3, DNM1, and SELP) were recognized. ACSL1 and ACOX1 might perform function in the early developmental stage of backfat tissue (60 days), and FN1, DCN, COL1A1, COL1A2, COL5A1, COL6A3, and COL14A1 have unignorable position in backfat tissue around 120 days developmental stage. Besides, hub genes SELP and DNM1 in modules significantly associated with backfat thickness and adipocyte area might be involved in the process of backfat tissue development. These findings contribute to understand the integrated mechanism underlying backfat tissue development and promote the progress of genetic improvement in Ningxiang pigs.

7.
Mar Pollut Bull ; 195: 115524, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703634

ABSTRACT

We developed a marine coating consisting of Cu-MOF-74, multi-walled carbon nanotube containing carboxyl groups (MWCNT-COOH) and self-healing polymers, which simultaneously possesses self-healing and anti-biofouling properties. Cu-MOF-74 can stably release Cu2+ by virtue of the coordination dissociative mechanism. Studies have proved that MWCNT can inhibit the growth of bacteria, so adding the MWCNT can help to reduce the amount of the copper ions and ensure the antibacterial effect of the coating. In addition, the cross-linked network and abundant -COOH provided by the polymers and MWCNT-COOH further prevent the loss of copper ions. Moreover, the coating we prepared has good performance of self-healing at room temperature or slightly heated because the polymers possess abundant non-covalent hydrogen bonds. Finally, the coating not only has superior antibacterial property, but also effectively prevents the adhesion of macrofouling organism. Therefore, the coating has a longer service life and its environmental friendliness has also been improved.

8.
ACS Appl Mater Interfaces ; 15(32): 38808-38820, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37526484

ABSTRACT

Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.


Subject(s)
Metal Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Porosity , Biofouling/prevention & control , Antioxidants/chemistry , Escherichia coli/drug effects , Bivalvia/drug effects , Animals
9.
Front Genet ; 14: 1105368, 2023.
Article in English | MEDLINE | ID: mdl-37205121

ABSTRACT

Aims: A growing body of evidence demonstrates that Stress granules (SGs), a non-membrane cytoplasmic compartments, are important to colorectal development and chemoresistance. However, the clinical and pathological significance of SGs in colorectal cancer (CRC) patients is unclear. The aim of this study is to propose a new prognostic model related to SGs for CRC on the basis of transcriptional expression. Main methods: Differentially expressed SGs-related genes (DESGGs) were identified in CRC patients from TCGA dataset by limma R package. The univariate and Multivariate Cox regression model was used to construct a SGs-related prognostic prediction gene signature (SGPPGS). The CIBERSORT algorithm was used to assess cellular immune components between the two different risk groups. The mRNA expression levels of the predictive signature from 3 partial response (PR) and 6 stable disease (SD) or progress disease (PD) after neoadjuvant therapy CRC patients' specimen were examined. Key findings: By screening and identification, SGPPGS comprised of four genes (CPT2, NRG1, GAP43, and CDKN2A) from DESGGs is established. Furthermore, we find that the risk score of SGPPGS is an independent prognostic factor to overall survival. Notably, the abundance of immune response inhibitory components in tumor tissues is upregulated in the group with a high-risk score of SGPPGS. Importantly, the risk score of SGPPGS is associated with the chemotherapy response in metastatic colorectal cancer. Significance: This study reveals the association between SGs related genes and CRC prognosis and provides a novel SGs related gene signature for CRC prognosis prediction.

10.
Article in English | MEDLINE | ID: mdl-36767247

ABSTRACT

Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl3·6H2O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.


Subject(s)
Iron , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Chromium/analysis , Water , Adsorption
11.
Cancer Cell Int ; 23(1): 27, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793075

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in the biology of colorectal cancer (CRC). There are several lncRNAs associated with invasion and metastasis have been characterized in CRC. However, studies focusing on the precise molecular mechanisms by which lncRNAs function in lymph node (LN) metastasis in CRC are still limited. METHODS: In this study, by analyzing TCGA dataset, we identified that AC244100.2 (termed CCL14-AS), a novel lncRNA enriched in the cytoplasm, was negatively correlated with LN metastasis and unfavorable prognosis of CRC. In situ hybridization was used to examine CCL14-AS expression in clinical CRC tissues. Various functional experiments including migration assay and wound-healing assay were used to investigate the effects of CCL14-AS on CRC cells migration. The nude mice popliteal lymph node metastasis model assay further confirmed the effects of CCL14-AS in vivo. RESULTS: CCL14-AS expression was significantly downregulated in CRC tissues compared to adjacent normal tissues. In addition, low CCL14-AS expression was correlated with advanced T classification, LN metastasis, distant metastasis, and shorter disease-free survival of CRC patients. Functionally, CCL14-AS overexpression inhibited the invasiveness of CRC cells in vitro and LN metastasis in nude mice. On the contrary, knockdown of CCL14-AS promoted the invasiveness and LN metastasis abilities of CRC cells. Mechanistically, CCL14-AS downregulated the expression of MEP1A via interacting with MEP1A mRNA and reduced its stability. Overexpression of MEP1A rescued the invasiveness and LN metastasis abilities in CCL14-AS-overexpressing CRC cells. Moreover, the expression levels of CCL14-AS was negatively correlated with that of MEP1A in CRC tissues. CONCLUSIONS: We identified a novel lncRNA, CCL14-AS, as a potential tumor suppressor in CRC. Our findings supported a model in which the CCL14-AS/MEP1A axis serves as critical regulator in CRC progression, suggesting a novel biomarker and therapeutic target in advanced CRC.

12.
Anim Biosci ; 36(3): 404-416, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36397714

ABSTRACT

OBJECTIVE: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition. METHODS: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. RESULTS: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 downregulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. CONCLUSION: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

13.
Front Plant Sci ; 13: 1077229, 2022.
Article in English | MEDLINE | ID: mdl-36479507

ABSTRACT

(E)-ß-ocimene, a ubiquitous monoterpene volatile in plants, is emitted from flowers to attract pollinators and/or from vegetative tissues as part of inducible defenses mediated by complex signaling networks when plants are attacked by insect herbivores. Wild pear species Pyrus betuleafolia used worldwide as rootstock generally displays valuable pest-resistant traits and is a promising genetic resource for pear breeding. In the current study, transcriptional changes in this wild pear species infested with a polyphagous herbivore Spodoptera litura and the underlying molecular mechanisms were fully investigated. A total of 3,118 differentially expressed genes (DEGs) were identified in damaged pear leaf samples. Spodoptera litura larvae infestation activated complex phytohormonal signaling networks in which jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid and auxin pathways were induced, whereas salicylic acid and abscisic acid pathways were suppressed. All DEGs associated with growth-related photosynthesis were significantly downregulated, whereas most DEGs involved in defense-related early signaling events, transcription factors, green leaf volatiles and volatile terpenes were significantly upregulated. The PbeOCS (GWHGAAYT028729), a putative (E)-ß-ocimene synthase gene, was newly identified in P. betuleafolia transcriptome. The upregulation of PbeOCS in S. litura-infested pear leaves supports a potential role for PbeOCS in herbivore-induced plant defenses. In enzyme-catalyzed reaction, recombinant PbeOCS utilized only geranyl pyrophosphate but not neryl diphosphate, farnesyl pyrophosphate or geranylgeranyl diphosphate as a substrate, producing (E)-ß-ocimene as the major product and a trace amount of (Z)-ß-ocimene. Moreover, as a catalytic product of PbeOCS, (E)-ß-ocimene showed repellent effects on larvae of S. litura in dual-choice bioassays. What is more, (E)-ß-ocimene increased mortalities of larvae in no-choice bioassays. These findings provide an overview of transcriptomic changes in wild pears in response to chewing herbivores and insights into (E)-ß-ocimene biosynthesis in pear plants, which will help elucidate the molecular mechanisms underlying pear-insect interactions.

14.
Plant Biotechnol J ; 20(6): 1098-1109, 2022 06.
Article in English | MEDLINE | ID: mdl-35179286

ABSTRACT

Fluorescent tagging protein localization (FTPL) and bimolecular fluorescence complementation (BiFC) are popular tools for in vivo analyses of the subcellular localizations of proteins and protein-protein interactions in plant cells. The efficiency of fluorescent fusion protein (FFP) expression analyses is typically impaired when the FFP genes are co-transformed on separate plasmids compared to when all are cloned and transformed in a single vector. Functional genomics applications using FFPs such as a gene family studies also often require the generation of multiple plasmids. Here, to address these needs, we developed an efficient, modular all-in-one (Aio) FFP (AioFFP) vector toolbox, including a set of fluorescently labelled organelle markers, FTPL and BiFC plasmids and associated binary vectors. This toolbox uses Gibson assembly (GA) and incorporates multiple unique nucleotide sequences (UNSs) to facilitate efficient gene cloning. In brief, this system enables convenient cloning of a target gene into various FFP vectors or the insertion of two or more target genes into the same FFP vector in a single-tube GA reaction. This system also enables integration of organelle marker genes or fluorescently fused target gene expression units into a single transient expression plasmid or binary vector. We validated the AioFFP system by testing genes encoding proteins known to be functional in FTPL and BiFC assays. In addition, we performed a high-throughput assessment of the accurate subcellular localizations of an uncharacterized rice CBSX protein subfamily. This modular UNS-guided GA-mediated AioFFP vector toolkit is cost-effective, easy to use and will promote functional genomics research in plants.


Subject(s)
Genetic Vectors , Plants , Cloning, Molecular , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Plant Cells/metabolism , Plants/genetics , Plasmids/genetics , Proteins/genetics
15.
ACS Appl Mater Interfaces ; 14(1): 1910-1920, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34928132

ABSTRACT

Marine biofouling is one of the technical bottlenecks restricting the development of the global marine economy. Among the commercial self-polishing antifouling coatings, cuprous oxide is an irreplaceable component because of its efficiency and broad-spectrum antibacterial activity. However, one of the biggest obstacles to achieving long-term antifouling is the "initial burst and final decay" of cuprous oxide in the coating. Here, we lock the copper ions by establishing an antifouling unit composed of Cu2O (core) and Cu-based metal-organic framework (Cu-MOF, shell). Cu-MOF is densely grown in situ on the periphery of Cu2O by acid proton etching. The shell structure of Cu-MOF can effectively improve the stability of the internal Cu2O and thus achieve the stable and slow release of copper ions. Furthermore, Cu2O@Cu-MOF nanocapsules can also achieve active defense by rapid and complete dissolution of Cu2O@Cu-MOF at local acidic microenvironment (pH ≤ 5) where the adhesion of fouling organisms occurs. Super-resolution fluorescence microscopy is used to explain the sterilization mechanism. Relying on the water- and acid-sensitive properties of Cu-MOF shell, the stable, controlled and efficient release of copper ions has been achieved for the Cu2O@Cu-MOF nanocapsules in the self-polishing antifouling coatings. Thus, these controlled-release nanocapsules make long-term antifouling promising.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Biofouling/prevention & control , Escherichia coli/drug effects , Water/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Copper/chemistry , Copper/pharmacology , Hydrogen-Ion Concentration , Materials Testing , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Microbial Sensitivity Tests , Nanoparticles/chemistry , Particle Size
16.
J Cancer ; 12(6): 1804-1814, 2021.
Article in English | MEDLINE | ID: mdl-33613769

ABSTRACT

Chimeric antigen receptor-T (CAR-T) cell immunotherapy is a novel method that is genetically engineered to recruit T cells against malignant disease. Administration of CAR-T cells has led to progress in hematological malignancies, and it has been proposed for solid tumors like colorectal cancer (CRC) for years. However, this method was not living up to expectations for the intrinsic challenges posed to CAR-T cells by solid tumors, which mainly due to the lacking of tumor-restricted antigens and adverse effects following treatment. New approaches are proposed to overcome the multiple challenges to alleviate the difficult situation of CAR-T cells in CRC, including engineering T cells with immune-activating molecules, regional administration of T cell, bispecific T cell engager, and combinatorial target-antigen recognition. In this review, we sum up the current stage of knowledge about target-selection, adverse events like on/off-tumor toxicity, the preclinical and clinical studies of CAR-T therapy, and the characteristics of strategies applied in CRC.

17.
Dis Markers ; 2020: 1418978, 2020.
Article in English | MEDLINE | ID: mdl-33376558

ABSTRACT

BACKGROUND: In patients with gastric cancer (GC), peritoneal metastasis is an indication of the end stage and often indicates a poor outcome. The diagnosis of peritoneal metastasis, especially occult peritoneal metastasis (OPM), remains a challenge for surgeons. This study was designed to explore the relationship between OPM and clinicopathological characteristics and preoperative hematological parameters in patients with GC and to develop a nomogram to predict the probability of OPM before surgery. METHODS: A total of 672 patients with GC from our center were included, including 583 OPM-negative and 89 OPM-positive patients. These patients were divided into training and validation groups based on when they received treatment. OPM was diagnosed during surgery in patients without any signs of metastasis through imaging examination. Predictive factors were screened by least absolute shrinkage and selection operator logistic regression of all 18 characteristics. The nomogram of OPM was constructed based on these filtered variables. The discriminative and calibration performance of the model were simultaneously evaluated. RESULTS: A total of six variables, including tumor size, degree of differentiation, depth of invasion, Glasgow prognosis score, and plasma levels of CA125 and fibrinogen, were selected for integration into the final predictive nomogram. The area under curve (AUC) of the nomogram with six factors was 0.906 (95% confidence interval (CI): 0.872-0.941) and 0.889 (95% CI: 0.795-0.984) in the training and validation groups, respectively. Calibration plots of the nomogram in the two sets revealed a good consistency between predicted and actual probabilities. Decision curve analysis showed that the nomogram had a positive net benefit among all threshold probabilities between 0% and 82%. This nomogram was superior to models incorporating only clinicopathologic or hematologic features. CONCLUSION: Both clinicopathological and preoperative hematological parameters are significantly associated with OPM. The nomogram constructed with six factors could be used to calculate the probability of OPM and identify the high-risk population in GC. This may be helpful for early detection of OPM in patients with GC.


Subject(s)
Biomarkers, Tumor/blood , Nomograms , Peritoneal Neoplasms/diagnosis , Peritoneal Neoplasms/secondary , Stomach Neoplasms/pathology , Area Under Curve , CA-125 Antigen/blood , Early Detection of Cancer , Female , Fibrinogen/metabolism , Hematology , Humans , Logistic Models , Male , Peritoneal Neoplasms/surgery , Preoperative Period , Retrospective Studies , Risk Factors
18.
Cancer Med ; 9(20): 7695-7705, 2020 10.
Article in English | MEDLINE | ID: mdl-32862492

ABSTRACT

BACKGROUND: Bladder cancer (BC) is a common urinary neoplasm with high incidence worldwide. Long noncoding RNA zinc ribbon domain containing 1 antisense RNA 1 (ZNRD1-AS1) has been reported to be upregulated in BC. However, the exact role of ZNRD1-AS1 as well as its mechanism remains poorly understood. METHODS: Zinc ribbon domain containing 1 antisense RNA 1, and its potential downstream genes microRNA-194 (miR-194) and zinc finger E-box binding homeobox 1 (ZEB1) levels were detected via quantitative real-time polymerase chain reaction or western blot. Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were detected to assess the influences of ZNRD1-AS1, miR-194 and ZEB1 on BC cells by colony formation, cell counting kit-8 (CCK-8), transwell analysis or western blot. The relationship between miR-194 and ZNRD1-AS1 or ZEB1 was analyzed by luciferase activity analysis. The xenograft experiment was performed to assess the function of ZNRD1-AS1 in vivo. RESULTS: Zinc ribbon domain containing 1 antisense RNA 1level was upregulated in BC. ZNRD1-AS1 silence repressed proliferation, migration, invasion and EMT in BC cells. MiR-194 was identified as a target of ZNRD1-AS1, and miR-194 upregulation repressed proliferation, migration, invasion, and EMT by ZNRD1-AS1 sponging. ZEB1 was targeted via miR-194 and its interference impeded proliferation, migration, invasion, and EMT. Moreover, ZNRD1-AS1 regulated ZEB1 expression via miR-194. Besides, inhibition of ZNRD1-AS1 attenuated tumor growth by miR-194/ZEB1 axis in vivo. CONCLUSION: Knockdown of ZNRD1-AS1 suppressed BC cell development in vitro and in vivo via targeting miR-194 to regulate ZEB1, indicating a novel avenue for treatment of BC.


Subject(s)
Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , MicroRNAs/genetics , RNA Interference , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/genetics , 3' Untranslated Regions , Animals , Cell Line, Tumor , Cell Movement/genetics , Disease Models, Animal , Disease Progression , Gene Knockdown Techniques , Humans , Male , Mice , Xenograft Model Antitumor Assays
19.
Proc Natl Acad Sci U S A ; 117(33): 20325-20333, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747542

ABSTRACT

Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1ß. Unlike DSP1α, DSP1ß is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.


Subject(s)
Alternative Splicing/physiology , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Nuclear Proteins/metabolism , RNA, Small Nuclear/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Developmental , Genetic Variation , Nuclear Proteins/genetics , Pollen , Seeds/genetics , Seeds/metabolism
20.
J Colloid Interface Sci ; 575: 158-167, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32361232

ABSTRACT

We report the rational design and fabrication of magnetically separable zinc ferrite@titanium dioxide (ZnFe2O4@TiO2) hollow core/shell nanospheres as photocatalysts for efficient H2 evolution by loading the TiO2 shell layer on the prepared ZnFe2O4 hollow nanospheres using the kinetics-controlled coating method. Meanwhile, the incident light absorption, photogenerated charge transfer and separation and photocatalytic hydrogen evolution activity were remarkably improved by well anchoring cadmium selenide (CdSe) quantum dots on the ZnFe2O4@TiO2 hollow core/shell nanospheres. This unique design integrates the structural and functional merits of the ZnFe2O4, TiO2, and CdSe quantum dots into porous hollow nanospheres with the double-shell heterostructure. This design significantly accelerates the separation and transport of photogenerated charge carriers, enhances the light absorption, and offers more active sites for the photocatalytic H2 evolution reaction. Benefitting from the unique structural and component merits, the optimized magnetically separable ZnFe2O4@TiO2/CdSe hollow core/shell nanospheres exhibit excellent photocatalytic hydrogen evolution performance with a high H2 generation rate (266.0 µmol h-1·g-1) and high stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...