Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Chem Commun (Camb) ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828544

ABSTRACT

We synthesized a low metal-to-sulfur atomic ratio (0.5) FeCoS4, exhibiting high reversible specific capacity. Reduced graphene oxide was covered on the surface to improve the cycling stability and rate performance further. Density functional theory calculations show that composite materials can effectively increase the adsorption energy and enhance the diffusion kinetics.

2.
Front Oncol ; 14: 1389618, 2024.
Article in English | MEDLINE | ID: mdl-38803537

ABSTRACT

Introduction: Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are considered pre-invasive forms of lung adenocarcinoma (LUAD) with a 5-year recurrence-free survival of 100%. We investigated genomic profiles in early tumorigenesis and distinguished mutational features of preinvasive to invasive adenocarcinoma (IAC) for early diagnosis. Methods: Molecular information was obtained from a 689-gene panel in the 90 early-stage LUAD Chinese patients using next-generation sequencing. Gene signatures were identified between pathology subtypes, including AIS/MIA (n=31) and IAC (n=59) in this cohort. Mutational and clinicopathological information was also obtained from the Cancer Genome Atlas (TCGA) as a comparison cohort. Results: A higher mutation frequency of TP53, RBM10, MUC1, CSMD, MED1, LRP1B, GLI1, MAP3K, and RYR2 was observed in the IAC than in the AIS/MIA group. The AIS/MIA group showed higher mutation frequencies of ERBB2, BRAF, GRIN2A, and RB1. Comparable mutation rates for mutually exclusive genes (EGFR and KRAS) across cohorts highlight the critical transition to invasive LUAD. Compared with the TCGA cohort, EGFR, KRAS, TP53, and RBM10 were frequently mutated in both cohorts. Despite limited gene mutation overlap between cohorts, we observed variant mutation types in invasive LUAD. Additionally, the tumor mutation burden (TMB) values were significantly lower in the AIS/MIA group than in the IAC group in both the Chinese cohort (P=0.0053) and TCGA cohort (P<0.01). Conclusion: These findings highlight the importance of distinguishing preinvasive from invasive LUAD in the early stages of LUAD and both pathology and molecular features in clinical practice, revealing genomic tumor heterogeneity and population differences.

3.
Inorg Chem ; 63(21): 9753-9762, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38743025

ABSTRACT

Global warming and heavy metal pollution pose tremendous challenges to human development, and photocatalysis is considered to be an effective strategy to solve these problems. Herein, copper(II) tetra (4-carboxyphenyl) porphyrin (CuTCPP) molecules were successfully in situ loaded onto Bi4O5Br2 by a hydrothermal approach. A series of experimental results show that the light absorption capacity and photogenerated carrier separation efficiency were synchronously enhanced after the construction of CuTCPP/Bi4O5Br2 composites. Hence, the as-prepared composites possess significantly improved photocatalytic ability for both CO2 and Cr(VI) reduction. Specifically, CuTCPP/Bi4O5Br2-2 achieves a CO generation rate of 17.14 µmol g-1 under 5 h irradiation, which is twice as high as that of Bi4O5Br2 (8.57 µmol g-1). Besides, the optimized CuTCPP/Bi4O5Br2-2 also exhibits a removal rate of 61.87% for Cr(VI) within 100 min under irradiation. Furthermore, the mechanism of CO2 and Cr(VI) photoreduction was explored by in situ Fourier transform infrared spectroscopy and capture experiments, respectively. This work can be a reference toward the construction of photocatalysts with high activity for solar energy conversion.

4.
J Colloid Interface Sci ; 665: 825-837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38564946

ABSTRACT

Photocatalytic peroxymonosulfate (PMS) oxidation systems demonstrate significant potential and promising prospects through the interconnection of photocatalytic and PMS oxidation for simultaneously achieving efficient pollutant removal and reduction of PMS dosage, which prevents resource wastage and secondary pollution. In this study, a Z-scheme Bi25FeO40/BiOCl (BOFC) heterojunction was constructed to carry out the photocatalytic PMS oxidation process for tetracyclines (TCs) pollutants at low PMS concentrations (0.08 mM). The photocatalytic PMS oxidation rate of Bi25FeO40/BiOCl composites for tetracycline hydrochloride (TCH), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DXC) reaches 86.6%, 83.6%, 86.7%, and 88.0% within 120 min. Simultaneously, the BOFC/PMS system under visible light (Vis) equally displayed the practical application prospects for the solo and mixed simulated TCs antibiotics wastewater. Based on the electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) valence band spectrum, a Z-scheme electron migration pathway was proposed to elucidate the mechanism underlying the performance enhancement of BOFC composites. Bi25FeO40 in BOFC composites can serve as active site for activating PMS by the formation of Fe3+/Fe2+ cycle. Toxicity estimation software tool (T.E.S.T.) and mung beans planting experiment demonstrates that BOFC/PMS/Vis system can reduce toxicity of TCs wastewater. Therefore, BOFC/PMS/Vis system achieves efficient examination in different water environments and efficient utilization of PMS, which displays a scientific reference for achieving environmentally-friendly and resource-saving handling processes.


Subject(s)
Environmental Pollutants , Peroxides , Wastewater , Reactive Oxygen Species , Anti-Bacterial Agents , Tetracycline , Light , Tetracyclines , Oxygen
5.
Adv Mater ; : e2313853, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684169

ABSTRACT

Organic acid-based deep eutectic solvents (DESs) as catalysts always suffer from weak stability and low recyclability due to the accumulation of organic oxidative products in the DES phase. Herein, a completely inorganic deep eutectic solvent (IDES) ZnCl2/PA with zinc chloride (ZnCl2) and phosphoric acid (PA) as precursors is constructed to realize liquid-liquid interface catalysis for desulfurization of fuel and product self-separation for the first time. Owing to the inorganic nature, the organic oxidative products are accumulated at the interface between the IDES and fuel rather than the IDES phase. With this unique feature, the IDES can be reused for at least 15 times without any further treatment in oxidative desulfurization process, showing a state-of-the-art cycle-regeneration stability. Moreover, compared with the reported organic DESs, the IDES also reveals more attractive catalytic oxidative desulfurization performance. Experimental and theoretical studies indicate that the strong coordination Zn···O═P and the strong adsorption energy between IDES and sulfides enhance the activation of H2O2 to reactive oxygen species, leading to the superior catalytic performance in oxidative desulfurization of fuel.

6.
ACS Sens ; 9(5): 2429-2439, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38668680

ABSTRACT

Norovirus (NoV) stands as a significant causative agent of nonbacterial acute gastroenteritis on a global scale, presenting a substantial threat to public health. Hence, the development of simple and rapid analytical techniques for NoV detection holds great importance in preventing and controlling the outbreak of the epidemic. In this work, a self-powered photoelectrochemical (PEC) immunosensor of NoV capsid protein (VP1) was proposed by the π-electron-rich carbon nitride homojunction (ER-CNH) as the photoanode. C4N2 ring derived from π-rich locust bean gum was introduced into the tri-s-triazine structure, creating a large π-delocalized conjugated carbon nitride homojunction. This strategy enhances the C/N atomic ratio, which widens light utilization, narrows the bandgap, and optimizes the electronic band structure of carbon nitride. By introduction of a π-rich conjugated structure, p-type domains were induced within n-type domains to build the internal electric field at the interface, thus forming a p-n homojunction to boost carrier separation and transfer. The ER-CNH photoanode exhibited excellent photoelectric performance and water oxidation capacity. Since VP1 inhibits the water oxidation of the ER-CNH photoanode, the open-circuit potential of the as-prepared PEC immunosensor system was reduced for detecting NoV VP1. The self-powered PEC immunosensor achieved a remarkably low detection limit (∼5 fg mL-1) and displayed high stability and applicability for actual stool samples. This research serves as a foundation concept for constructing immunosensors to detect other viruses and promotes the application of self-powered systems for life safety.


Subject(s)
Electrochemical Techniques , Feces , Norovirus , Norovirus/immunology , Norovirus/isolation & purification , Norovirus/chemistry , Immunoassay/methods , Humans , Feces/virology , Feces/chemistry , Electrochemical Techniques/methods , Capsid Proteins/chemistry , Capsid Proteins/immunology , Nitriles/chemistry , Biosensing Techniques/methods , Limit of Detection , Electrons
7.
Fish Shellfish Immunol ; 148: 109517, 2024 May.
Article in English | MEDLINE | ID: mdl-38513916

ABSTRACT

Largemouth bass ranavirus (LMBV) is an epidemic disease that seriously jeopardizes the culture of largemouth bass(Micropterus salmoides), and it has a very high incidence in largemouth bass. Once an outbreak occurs, it may directly lead to the failure of the culture, resulting in substantial economic losses, but there is no effective vaccine or special effective drug yet. Consequently, it is important to establish an accurate, sensitive, convenient and specific detection approach for preventing LMBV infection. The recombinant enzyme-assisted amplification (RAA) technology was used in combination with clustered regularly interspaced short palindromic repeats (CRISPR), and associated protein 13a (CRISPR/Cas13a) to detect LMBV. We designed RAA primers and CRISPR RNA (crRNA) that targeted the conserved region in the LMBV main capsid protein (MCP) gene, amplified sample nucleic acids using the RAA technology, performed CRISPR/Cas13a fluorescence detection and evaluated the sensitivity and specificity of the established method with qPCR as a control method. This technique was able to determine the results by collecting fluorescence signals, visualizing fluorescence by UV excitation and combining with lateral flow strips (LFS). The sensitivity and specificity of the established method were consistent with the qPCR method. Besides, it was performed at a constant temperature of 37 °C and the sensitivity of the reaction system was 3.1 × 101 copies/µL, with no cross-reactivity with other common aquatic pathogens. Further, the positive detection rate of the proposed method in 32 clinical samples was consistent with that of qPCR. In conclusion, our established RAA-CRISPR/Cas13 method for detecting LMBV is sensitive, simple and specific, which is applicable in the rapid on-site detection and epidemiological monitoring of LMBV.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Ranavirus , Animals , Capsid Proteins
8.
J Colloid Interface Sci ; 664: 736-747, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492375

ABSTRACT

Enhancing the activation of peroxymonosulfate (PMS) is essential for generating more reactive oxygen species in advanced oxidation process (AOPs). Nevertheless, improving PMS adsorption and expediting interfacial electron transfer to enhance reaction kinetics pose significant challenges. Herein, we construct confined W18O49 nanowires with asymmetric active centers containing Co-Vo-W (Vo: oxygen vacancy). The design incorporates surface-rich Vo and single-atom Co, and the resulting material is employed for PMS activation in water purification. By coupling unsaturated coordinated electrons in Vo with low-valence Co single atoms to construct an the "electron fountainhead", the adsorption and activation of PMS are enhanced. This results in the generation of more active free radicals (SO4•-, •OH, •O2-) and non-free radicals (1O2) for the decomposition of micropollutants. Thereinto, the degradation rate of bisphenol A (BPA) by Co-W18O49 is 32.6 times faster that of W18O49 monomer, which is also much higher than those of other transition-metal-doped W18O49 composites. This work is expected to help to elucidate the rational design and efficient PMS activation of catalysts with asymmetric active centers.

9.
Biomed Pharmacother ; 172: 116303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377738

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS: For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS: PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS: Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/ß-catenin pathway.


Subject(s)
Eye Proteins , Hypertension, Pulmonary , Indoles , Nerve Growth Factors , Pyrroles , Serpins , Humans , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Monocrotaline , Rats, Sprague-Dawley , Endothelial Cells , Vascular Remodeling
10.
J Colloid Interface Sci ; 662: 160-170, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38340515

ABSTRACT

Developing a highly efficient strategy for the stabilization of the solid-liquid interface is a persistent pursuit for researchers. Herein, porous ionic liquids based on UiO-66 (Zr) porous materials were synthesized and applied to the selective desulfurization catalysis, which integrates the permanent pores of porous solids with the exceptional properties of ionic liquids. Results show that porous ionic liquids possess high activity and selectivity for dibenzothiophene. Experimental analysis and density functional theory calculations revealed that the ionic liquids moiety served as an extractant to enrich dibenzothiophene into the porous ionic liquids phase through the π···π and CH···π interactions. Additionally, the electrostatic solvent effect in the porous ionic liquids contributes to the stabilization solid-liquid interface, which was favorable for UiO-66 moiety to catalytically activate hydrogen peroxide (H2O2) to generate ·OH radicals, and subsequently oxidized dibenzothiophene to the corresponding sulfone. It is hoped that the development of porous ionic liquids could pave a new route to the stabilization of the solid-liquid interface for catalytic oxidation.

11.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345053

ABSTRACT

Pigment epithelium-derived factor (PEDF) could bind to vascular endothelial growth factor receptor 2 (VEGFR2) and inhibit its activation induced by VEGF. But how PEDF affects VEGFR2 pathway is still poorly understood. In this study, we elucidated the precise mechanism underlying the interaction between PEDF and VEGFR2, and subsequently corroborated our findings using a rat AMI model. PEDF prevented endocytosis of VE-cadherin induced by hypoxia, thereby protecting the endothelium integrity. A three-dimensional model of the VEGFR2-PEDF complex was constructed by protein-protein docking method. The results showed that the VEGFR2-PEDF complex was stable during the simulation. Hydrogen bonds, binding energy and binding modes were analyzed during molecular dynamics simulations, which indicated that hydrogen bonds and hydrophobic interactions were important for the recognition of VEGFR2 with PEDF. In addition, the results from exudation of fibrinogen suggested that PEDF inhibits vascular leakage in acute myocardial infarction and confirmed the critical role of key amino acids in the regulation of endothelial cell permeability. This observation is also supported by echocardiography studies showing that the 34mer peptide sustained cardiac function during acute myocardial infarction. Besides, PEDF and 34mer could inhibit the aggregation of myofiber in the heart and promoted the formation of a dense cell layer in cardiomyocytes, which suggested that PEDF and 34mer peptide protect against AMI-induced cardiac dysfunction. These results suggest that PEDF inhibits the phosphorylation of downstream proteins, thereby preventing vascular leakage, which provides a new therapeutic direction for the treatment of acute myocardial infarction.Communicated by Ramaswamy H. Sarma.

12.
Adv Mater ; 36(19): e2312676, 2024 May.
Article in English | MEDLINE | ID: mdl-38290714

ABSTRACT

Broad-spectrum-driven high-performance artificial photosynthesis is quite challenging. Herein, atomically ultrathin bismuthene with semimetallic properties is designed and demonstrated for broad-spectrum (ultraviolet-visible-near infrared light) (UV-vis-NIR)-driven photocatalytic CO2 hydrogenation. The trap states in the bandgap produced by edge dangling bonds prolong the lifetime of the photogenerated electrons from 90 ps in bulk Bi to 1650 ps in bismuthine, and excited-state electrons are enriched at the edge of bismuthine. The edge dangling bonds of bismuthene as the active sites for adsorption/activation of CO2 increase the hybridization ability of the Bi 6p orbital and O 2p orbital to significantly reduce the catalytic reaction energy barrier and promote the formation of C─H bonds until the generation of CH4. Under λ ≥ 400 nm and λ ≥ 550 nm irradiation, the utilization ratios of photogenerated electron reduction CO2 hydrogenation to CO and CH4 for bismuthene are 58.24 and 300.50 times higher than those of bulk Bi, respectively. Moreover, bismuthene can extend the CO2 hydrogenation reaction to the near-infrared region (λ ≥ 700 nm). This pioneering work employs the single semimetal element as an artificial photosynthetic catalyst to produce a broad spectral response.

13.
Nanomicro Lett ; 16(1): 90, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227163

ABSTRACT

The insufficient active sites and slow interfacial charge transfer of photocatalysts restrict the efficiency of CO2 photoreduction. The synchronized modulation of the above key issues is demanding and challenging. Herein, strain-induced strategy is developed to construct the Bi-O-bonded interface in Cu porphyrin-based monoatomic layer (PML-Cu) and Bi12O17Br2 (BOB), which triggers the surface interface dual polarization of PML-Cu/BOB (PBOB). In this multi-step polarization, the built-in electric field formed between the interfaces induces the electron transfer from conduction band (CB) of BOB to CB of PML-Cu and suppresses its reverse migration. Moreover, the surface polarization of PML-Cu further promotes the electron converge in Cu atoms. The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB, significantly promoting the adsorption and activation of CO2 and CO desorption. The conversion rate of CO2 photoreduction to CO for PBOB can reach 584.3 µmol g-1, which is 7.83 times higher than BOB and 20.01 times than PML-Cu. This work offers valuable insights into multi-step polarization regulation and active site design for catalysts.

14.
Inorg Chem ; 63(2): 1488-1498, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38175157

ABSTRACT

The crystal plane effect has gained extensive attention in heterogeneous catalysis reactions; however, it is far from being systematically probed in titanium dioxide (TiO2)-supported vanadium catalysts. Herein, a series of vanadium (V) single atoms and clusters anchored on TiO2 with different crystal planes was fabricated by an improved "top-down" protocol. The dispersion state, electronic structure, and redox properties of the V single-atom and VOx cluster-supported catalysts were systematically analyzed by a series of characterization methods, including X-ray absorption near edge structure (XANES) and density functional theory (DFT) calculations, and their catalytic performances were examined for aerobic oxidative desulfurization (AODS) of 4,6-dimethyl-dibenzothiophen (4,6-DMDBT) with O2 as the oxidant. The results unveiled that the synergistic effect between the V single atom and the VOx cluster perceptibly promoted the catalytic performances of VOx/TiO2 samples. Therein, VOx/TiO2-(001) shows the lowest apparent activation energy (Ea) value of 46.3 kJ/mol and the optimal AODS performance with complete 4,6-DMDBT conversion to 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) within 60 min at 120 °C as compared with VOx/TiO2-(101) (81.9 kJ/mol and 180 min) and VOx/TiO2-(100) (68.0 kJ/mol and 240 min), which should be attributed to its higher V5+/V4+ ratio, the optimal redox behavior of the V species, the moderate adsorption energy between 4,6-DMDBT and VOx active centers, and the synthetic effect of V single atoms and VOx clusters. Moreover, VOx/TiO2-(001) exhibits robust durability in seven cycles of reuse, showcasing the potential for practical applications in the future.

15.
ACS Omega ; 9(3): 3324-3341, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284064

ABSTRACT

The Ordos Basin is an important sandstone-type uranium enrichment region in China, and the Lower Cretaceous Huanhe Formation has attracted significant attention as a newly discovered ore-bearing stratum. To elucidate the provenance, tectonic background, and sedimentary environment constraints on uranium enrichment in the Huanhe Formation sandstone-type uranium deposits, 10 representative sandstone samples from the study area were analyzed by using electron microscopy, X-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS), and electron probe microanalysis. Independent uranium minerals in the Yihewusu area of Hangjin Banner were shown for the first time to be composed mainly of coffinite and titanium-uranium oxide, with trace amounts of pitchblende. The major element diagrams of the sandstone and ratios of Sr/Ba, V/Cr, and U/Th and enrichment factors of Mo and U revealed that the source rocks of the Huanhe Formation sandstone in the study area were intermediate-felsic igneous rocks. The tectonic setting is characterized as an active continental margin, with later deposition in brackish-to-marine water environments. The ore-bearing strata indicate a reducing environment, whereas the nonore-bearing strata indicate a weakly oxidizing environment. With reference to previous studies, the sedimentary material primarily originated from the medium-acidic intrusive rocks exposed in the northern portion of the basin, including the Daqing-Wula Mountains, the Yin Mountains, and middle-acidic intrusions along the eastern margin of the Alxa region in the western part of the basin. The uranium-rich granitic pluton of the source area contributed to the preenrichment of uranium in the target sandstone layer. Under oxidizing aqueous conditions, U6+ migration was activated, whereas under reducing aqueous conditions, U6+ was reduced to U4+, resulting in eventual sedimentation of coffinite as ore.

16.
J Cardiothorac Surg ; 19(1): 33, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291461

ABSTRACT

BACKGROUND: This study aimed to compare the analgesic efficacy of transthoracic intercostal nerve block (TINB) and percutaneous intercostal nerve block (PINB) for video-assisted thoracic surgery (VATS) using a retrospective analysis. METHODS: A total of 336 patients who underwent VATS between January 2021 and June 2022 were reviewed retrospectively. Of the participants, 194 received TINB and were assigned to the T group, while 142 patients received PINB and were assigned to the P group. Both groups received 25 ml of ropivacaine via TINB or PINB at the end of the surgery. The study measured opioid consumption, pain scores, analgesic satisfaction, and safety. Propensity score matching (PSM) analysis was performed to minimize selection bias due to nonrandom assignment. RESULTS: After propensity score matching, 86 patients from each group were selected for analysis. The P group had significantly lower cumulative opioid consumption than the T group (p < 0.01). The Visual Analogue Scale (VAS) scores were lower for the P group than the T group at 6 and 12 h post-surgery (p < 0.01); however, there was no significant difference in the scores between the two groups at 3, 24, and 48 h (p > 0.05). The analgesic satisfaction in the P group was higher than in the T group (p < 0.05). The incidence of back pain, nausea or vomiting, pruritus, dizziness, and skin numbness between the two groups was statistically insignificant (p > 0.05). CONCLUSION: The study suggests that PINB provides superior analgesia for patients undergoing thoracic surgery compared to TINB without any extra adverse effects.


Subject(s)
Nerve Block , Thoracic Surgery, Video-Assisted , Humans , Analgesics, Opioid/therapeutic use , Retrospective Studies , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Intercostal Nerves , Propensity Score , Analgesics
17.
Small ; 20(2): e2304404, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670529

ABSTRACT

Cyano-rich g-C3 N4 materials are widely used in various fields of photochemistry due to the very powerful electron-absorbing ability and electron storage function of cyano, as well as its advantages in improving light absorption, adjusting the energy band structure, increasing the polarization rate and electron density in the structure, active site concentration, and promoting oxygen activation ability. Notwithstanding, there is yet a huge knowledge break in the design, preparation, detection, application, and prospect of cyano-rich g-C3 N4 . Accordingly, an overall review is arranged to substantially comprehend the research progress and position of cyano-rich g-C3 N4 materials. An overall overview of the current research position in the synthesis, characterization (determination of their location and quantity), application, and reaction mechanism analysis of cyano-rich g-C3 N4 materials to provide a quantity of novel suggestions for cyano-modified carbon nitride materials' construction is provided. In view of the prevailing challenges and outlooks of cyano-rich g-C3 N4 materials, this paper will purify the growth direction of cyano-rich g-C3 N4 , to achieve a more in-depth exploration and broaden the applications of cyano-rich g-C3 N4 .

18.
Sci China Life Sci ; 67(2): 286-300, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897614

ABSTRACT

We previously demonstrated that normal high-density lipoprotein (nHDL) can promote angiogenesis, whereas HDL from patients with coronary artery disease (dHDL) is dysfunctional and impairs angiogenesis. Autophagy plays a critical role in angiogenesis, and HDL regulates autophagy. However, it is unclear whether nHDL and dHDL regulate angiogenesis by affecting autophagy. Endothelial cells (ECs) were treated with nHDL and dHDL with or without an autophagy inhibitor. Autophagy, endothelial nitric oxide synthase (eNOS) expression, miRNA expression, nitric oxide (NO) production, superoxide anion (O2•-) generation, EC migration, and tube formation were evaluated. nHDL suppressed the expression of miR-181a-5p, which promotes autophagy and the expression of eNOS, resulting in NO production and the inhibition of O2•- generation, and ultimately increasing in EC migration and tube formation. dHDL showed opposite effects compared to nHDL and ultimately inhibited EC migration and tube formation. We found that autophagy-related protein 5 (ATG5) was a direct target of miR-181a-5p. ATG5 silencing or miR-181a-5p mimic inhibited nHDL-induced autophagy, eNOS expression, NO production, EC migration, tube formation, and enhanced O2•- generation, whereas overexpression of ATG5 or miR-181a-5p inhibitor reversed the above effects of dHDL. ATG5 expression and angiogenesis were decreased in the ischemic lower limbs of hypercholesterolemic low-density lipoprotein receptor null (LDLr-/-) mice when compared to C57BL/6 mice. ATG5 overexpression improved angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Taken together, nHDL was able to stimulate autophagy by suppressing miR-181a-5p, subsequently increasing eNOS expression, which generated NO and promoted angiogenesis. In contrast, dHDL inhibited angiogenesis, at least partially, by increasing miR-181a-5p expression, which decreased autophagy and eNOS expression, resulting in a decrease in NO production and an increase in O2•- generation. Our findings reveal a novel mechanism by which HDL affects angiogenesis by regulating autophagy and provide a therapeutic target for dHDL-impaired angiogenesis.


Subject(s)
MicroRNAs , Humans , Mice , Animals , MicroRNAs/metabolism , Endothelial Cells/metabolism , Angiogenesis , Mice, Inbred C57BL , Autophagy/genetics
19.
Small ; 20(7): e2306178, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37800605

ABSTRACT

The ethanol oxidation reaction (EOR) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts for both EOR and hydrogen evolution reaction (HER) is a major challenge. Herein, the synthesis of Pd3 Pb@Pt core-shell nanocubes with controlled shell thickness by Pt-seeded epitaxial growth on intermetallic Pd3 Pb cores is reported. The lattice mismatch between the Pd3 Pb core and the Pt shell leads to the expansion of the Pt lattice. The synergistic effects between the tensile strain and the core-shell structures result in excellent electrocatalytic performance of Pd3 Pb@Pt catalysts for both EOR and HER. In particular, Pd3 Pb@Pt with three Pt atomic layers shows a mass activity of 8.60 A mg-1 Pd+Pt for ethanol upgrading to acetic acid and close to 100% of Faradic efficiency for HER. An EOR/HER electrolysis system is assembled using Pd3 Pb@Pt for both the anode and cathode, and it is shown that low cell voltage of 0.75 V is required to reach a current density of 10 mA cm-2 . The present work offers a promising strategy for the development of bifunctional catalysts for hybrid electrocatalytic reactions and beyond.

20.
CNS Neurosci Ther ; 30(4): e14518, 2024 04.
Article in English | MEDLINE | ID: mdl-37905680

ABSTRACT

AIMS: Peripheral immune cells infiltrating into the brain trigger neuroinflammation after an ischemic stroke. Partial immune cells reprogram their function for neural repair. Which immune cells promote ischemic brain recovery needs further identification. METHODS: We performed single-cell transcriptomic profiling of CD45high immune cells isolated from the ischemic hemisphere at subacute (5 days) and chronic (14 days) stages after ischemic stroke. RESULTS: A subset of phagocytic macrophages was associated with neuron projection regeneration and tissue remodeling. We also identified a unique type of T cells with highly expressed macrophage markers, including C1q, Apoe, Hexb, and Fcer1g, which showed high abilities in tissue remodeling, myelination regulation, wound healing, and anti-neuroinflammation. Moreover, natural killer cells decreased cytotoxicity and increased energy and metabolic function in the chronic stage after ischemic stroke. Two subgroups of neutrophils upregulated CCL signals to recruit peripheral immune cells and released CXCL2 to keep self-recruiting at the chronic stage. CONCLUSIONS: We identified subsets of peripheral immune cells that may provide potential therapeutic targets for promoting poststroke recovery.


Subject(s)
Ischemic Stroke , Stroke , Mice , Animals , Infarction, Middle Cerebral Artery/complications , Stroke/complications , Macrophages , Brain , Ischemic Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...