Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 658: 976-985, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157621

ABSTRACT

Sacrificial cathode additives have emerged as a tempting strategy to compensate the initial capacity loss (ICL) in Li-ion batteries (LIBs) manufacturing. However, the utilization of sacrificial cathode additives inevitably brings residuals, side reactions, and negative impacts in which relevant researches are still in the early stage. In this study, we conduct a systematic investigation on the effects of employing a nickel-based sacrificial additive, Li2Cu0.1Ni0.9O2 (LCNO), and propose a feasible strategy to achieve advantageous surface reconstruction on LCNO. Specifically, we build a Li5AlO4 (LAO) coating layer on the LCNO through dry ball milling and annealing treatment. This process not only consumes surface residual lithium compounds on LCNO but also demonstrates minimal detrimental effects on its performance. The surface reconstructed LCNO (SR-LCNO) reveals mitigated gas generation and suppressed structure degradation under high working voltage (>4.1 V), thereby causing negligible negative effects on the cycling capability and rate performance of commercial cathode materials. The full cells containing SR-LCNO deliver significantly improved electrochemical properties, with no observed exacerbation of side reactions. This work awakes the awareness of the prudent utilization of sacrificial cathode additives and provides an effective strategy for harmless pre-lithiation via surface reconstructed sacrificial cathode additives.

2.
Adv Mater ; 35(48): e2305063, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37474115

ABSTRACT

Rechargeable batteries are of great significance for alleviating the growing energy crisis by providing efficient and sustainable energy storage solutions. However, the multiple issues associated with the diverse components in a battery system as well as the interphase problems greatly hinder their applications. Proteins and their subunits, peptides, and amino acids, are versatile biomolecules. Functional groups in different amino acids endow these biomolecules with unique properties including self-assembly, ion-conducting, antioxidation, great affinity to exterior species, etc. Besides, protein and its subunit materials can not only work in solid forms but also in liquid forms when dissolved in solutions, making them more versatile to realize materials engineering via diverse approaches. In this review, it is aimed to offer a comprehensive understanding of the properties of proteins and their subunits, and research progress of using these versatile biomolecules to address the engineering issues of various rechargeable batteries, including alkali-ion batteries, lithium-sulfur batteries, metal-air batteries, and flow batteries. The state-of-the-art advances in electrode, electrolyte, separator, binder, catalyst, interphase modification, as well as recycling of rechargeable batteries are involved, and the impacts of biomolecules on electrochemical properties are particularly emphasized. Finally, perspectives on this interesting field are also provided.


Subject(s)
Amino Acids , Antioxidants , Electric Power Supplies , Electrodes , Engineering
3.
Small ; 19(41): e2303539, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287389

ABSTRACT

On account of high capacity and high voltage resulting from anionic redox, Li-rich layered oxides (LLOs) have become the most promising cathode candidate for the next-generation high-energy-density lithium-ion batteries (LIBs). Unfortunately, the participation of oxygen anion in charge compensation causes lattice oxygen evolution and accompanying structural degradation, voltage decay, capacity attenuation, low initial columbic efficiency, poor kinetics, and other problems. To resolve these challenges, a rational structural design strategy from surface to bulk by a facile pretreatment method for LLOs is provided to stabilize oxygen redox. On the surface, an integrated structure is constructed to suppress oxygen release, electrolyte attack, and consequent transition metals dissolution, accelerate lithium ions transport on the cathode-electrolyte interface, and alleviate the undesired phase transformation. While in the bulk, B doping into Li and Mn layer tetrahedron is introduced to increase the formation energy of O vacancy and decrease the lithium ions immigration barrier energy, bringing about the high stability of surrounding lattice oxygen and outstanding ions transport ability. Benefiting from the specific structure, the designed material with the enhanced structural integrity and stabilized anionic redox performs an excellent electrochemical performance and fast-charging property..

4.
Small ; 19(37): e2302609, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140083

ABSTRACT

Fe-based mixed phosphate cathodes for Na-ion batteries usually possess weak rate capacity and cycle stability challenges resulting from sluggish diffusion kinetics and poor conductivity under the relatively low preparation temperature. Here, the excellent sodium storage capability of this system is obtained by introducing the high-entropy doping to enhance the electronic and ionic conductivity. As designed high-entropy doping Na4 Fe2.85 (Ni,Co,Mn,Cu,Mg)0.03 (PO4 )2 P2 O7 (NFPP-HE) cathode can release 122 mAh g-1 at 0.1 C, even 85 mAh g-1 at ultrahigh rate of 50 C, and keep a high retention of 82.3% after 1500 cycles at 10 C. Besides, the cathode also exhibits outstanding fast charge capacity in terms of the cyclability and capacity with 105 mAh g-1 at 5 C/1 C, corresponding 94.3% retention after 500 cycles. The combination of in situ X-ray diffraction, density functional theory, conductive-atomic force microscopy, and galvanostatic intermittent titration technique tests reveal that the reversible structure evolution with optimized Na+ migration path and energy barrier boost the Na+ kinetics and improve the interfacial electronic transfer, thus improving performance.

5.
Sci Bull (Beijing) ; 68(2): 180-191, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36658032

ABSTRACT

Layered oxides have attracted unprecedented attention for their outstanding performance in sodium-ion battery cathodes. Among them, the two typical candidates P2 and O3 type materials generally demonstrate large diversities in specific capacity and cycling endurance with their advantages. Thus, composite materials that contain both P2 and O3 have been widely designed and constructed. Nevertheless, the anionic/cationic ions' behavior and structural evolution in such complex structures remain unclear. In this study, a deep analysis of an advanced Na0.732Ni0.273Mg0.096Mn0.63O2 material that contains 78.39 wt% P2 phase and 21.61 wt% O3 phase is performed based on two typical cathodes P2 Na0.67Ni0.33Mn0.67O2 and O3 NaNi0.5Mn0.5O2 that have the same elemental constitution but different crystal structures. Structural analysis and density functional theory (DFT) calculations suggest that the composite is preferred to form a symbiotic structure at the atomic level, and the complex lattice texture of the biphase structure can block unfavorable ion and oxygen migration in the electrode process. Consequently, the biphase structure has significantly improved the electrochemical performance and kept preferable anionic oxygen redox reversibility. Furthermore, the hetero-epitaxy-like structure of the intergrowth of P2 and O3 structures share multi-phase boundaries, where the inconsistency in electrochemical behavior between P2 and O3 phases leads to an interlocking effect to prevent severe structural collapse and relieves the lattice strain from Na+ de/intercalation. Hence, the symbiotic P2/O3 composite materials exhibited a preferable capacity and cyclability (∼130 mAh g-1 at 0.1 C, 73.1% capacity retention after 200 cycles at 1 C), as well as reversible structural evolution. These findings confirmed the advantages of using the bi/multi-phase cathode for high-energy Na-ion batteries.

6.
Angew Chem Int Ed Engl ; 62(5): e202212695, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36375075

ABSTRACT

Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4 + tends to be preferably absorbed on the Zn surface to form a "shielding effect" and blocks the direct contact of water with Zn. Moreover, NH4 + and (H2 PO4 )- jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.

7.
Biomaterials ; 291: 121916, 2022 12.
Article in English | MEDLINE | ID: mdl-36410110

ABSTRACT

Cancer treatment currently still faces crucial challenges in therapeutic effectiveness, precision, and complexity. Photodynamic therapy (PDT) as a non-invasive tactic has earned widespread popularity for its excellent therapeutic output, flexibility, and restrained toxicity. Nonetheless, drawbacks, including low efficiency, poor cancer specificity, and limited therapeutic depth, remain considerable during the cancer treatment. Although great effort has been made to improve the performance, the overall efficiency and biosafety are still ambiguous and unable to meet urgent clinical needs. Herein, this study integrates merits from previous PDT strategies and develops a cancer-targeting, activatable, biosafe photosensitizer. Owing to excellent self-assembly ability, this photosensitizer can be conveniently prepared as multifunctional nano-photosensitizers, namely MBNPs, and applied to in vivo cancer phototheranostics in "all-in-one" mode. This study successfully verifies the mechanism of MBNPs, then deploys them to cell-based and in vivo cancer PDT. Based on the unique cancer microenvironment, MBNPs achieve precise distribution, accumulation, and activation towards the tumor, releasing methylene blue as a potent photosensitizer for phototherapy. The PDT outcome demonstrates MBNPs' superior cancer specificity, remarkable PDT efficacy, and negligible toxicity. Meanwhile, in vivo NIR fluorescence and photoacoustic imaging have been utilized to guide the PDT treatment synergistically. Additionally, the biosafety of the MBNPs-based PDT treatment is ensured, thus providing potential for future clinical studies.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Containment of Biohazards , Neoplasms/drug therapy , Tumor Microenvironment
8.
Angew Chem Int Ed Engl ; 61(47): e202209947, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36151600

ABSTRACT

Photoaffinity labeling is a powerful technique to interrogate drug-protein interactions in native cellular environments. Photo-cross-linkers are instrumental for this technique. However, the introduction of unnatural photo-cross-linkers may significantly reduce the bioactivity of the drug, thus impairing the chemoproteomic outcomes. Herein, we developed a common pharmacophore, isoxazole, into a natively embedded photo-cross-linker for chemoproteomics, which minimally perturbs the drug structure. The photo-cross-linking reactions of the isoxazole were thoroughly investigated for the first time. Functionalized isoxazoles were then designed and applied to protein labeling, demonstrating the superior photo-cross-linking efficiency. Subsequently, two isoxazole-based drugs, Danazol and Luminespib, were employed in chemoproteomic studies, revealing their potential cellular targets. These results provide valuable strategies for future chemoproteomic study and drug development.


Subject(s)
Photoaffinity Labels , Proteins , Photoaffinity Labels/chemistry , Proteins/chemistry , Isoxazoles , Cross-Linking Reagents/chemistry
9.
Adv Sci (Weinh) ; 9(25): e2202082, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35778829

ABSTRACT

Polyanionic compounds have large compositional flexibility, which creates a growing interest in exploring the property limits of electrode materials of rechargeable batteries. The realization of multisodium storage in the polyanionic electrodes can significantly improve capacity of the materials, but it often causes irreversible capacity loss and crystal phase evolution, especially under high-voltage operation, which remain important challenges for their application. Herein, it is shown that the multisodium storage in the polyanionic cathode can be enhanced and stabilized by increasing the entropy of the polyanionic host structure. The obtained polyanionic Na3.4 Fe0.4 Mn0.4 V0.4 Cr0.4 Ti0.4 (PO4 )3 cathode exhibits multicationic redox property to achieve high capacity with good reversibility under the high voltage of 4.5 V (vs Na/Na+ ). Exploring the underlying mechanism through operando characterizations, a stable trigonal phase with reduced volume change during the multisodium storage process is disclosed. Besides, the enhanced performance of the HE material also derives from the synergistic effect of the diverse TM species with suitable molarity. These results reveal the effectiveness of high-entropy concept in expediting high-performance polyanionic cathodes discovery.

10.
Adv Mater ; 34(29): e2202624, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561414

ABSTRACT

The multiple issues of unstable electrode/electrolyte interphases, sluggish reaction kinetics, and transition-metal (TM) dissolution have long greatly affected the rate and cycling performance of cathode materials for Na-ion batteries. Herein, a multifunctional protein-based binder, sericin protein/poly(acrylic acid) (SP/PAA), is developed, which shows intriguing physiochemical properties to address these issues. The highly hydrophilic nature and strong H-bond interaction between crosslinking SP and PAA leads to a uniform coating of the binder layer, which serves as an artificial interphase on the high-voltage Na4 Mn2 Fe(PO4 )2 P2 O7 cathode material (NMFPP). Through systematic experiments and theoretical calculations, it is shown that the SP/PAA binder is electrochemically stable at high voltages and possesses increased ionic conductivity due to the interaction between sericin and electrolyte anion ClO4 - , which can provide additional sodium-migration paths with greatly reduced energy barriers. Besides, the strong interaction force between the binder and the NMFPP can effectively protect the cathode from electrolyte corrosion, suppress Mn-dissolution, stabilize crystal structure, and ensure electrode integrity during cycling. Benefiting from these merits, the SP/PAA-based NMFPP electrode displays enhanced rate and cycling performance. Of note, the universality of the SP/PAA binder is further confirmed on Na3 V2 (PO4 )2 F3 . It is believed that the versatile protein-based binder is enlightening for the development of high-performance batteries.


Subject(s)
Sericins , Electric Power Supplies , Electrodes , Interphase , Ions , Sodium
11.
ACS Appl Mater Interfaces ; 14(16): 18313-18323, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35421311

ABSTRACT

As an attractive cathode candidate for sodium-ion batteries, P2-type Na2/3Ni1/3Mn2/3O2 is famous for its high stability in humid air, attractive capacity, and high operating voltage. However, the low Na+ transport kinetics, oxygen-redox reactions, and irreversible structural evolution at high-voltage areas hinder its practical application. Herein, a comprehensive study of a microbar P2-type Ni2/3Ni1/4Mg1/12Mn2/3O2 material with {010} facets is presented, which exhibits high reversibility of structural evolution and anionic redox activity, leading to outstanding rate capability and cyclability. The notable rate performance (53 mA h g-1 at 20 C, 2.0-4.3 V) contributed to the high exposure of {010} facets via controlling the growth orientation of the precursor, which is certified by density functional theory calculation and lattice structural analysis. Mg substitution strengthens the reversibility of anionic oxygen redox and structural evolution in high-voltage areas that was confirmed by the in situ X-ray diffraction and ex situ X-ray photoelectron spectroscopy tests, leading to outstanding cyclic reversibility (68.9% after 1000 cycles at 5 C) and slowing down the voltage fading. This work provides new insights into constructing electrochemically active planes combined with heteroatom substitution to improve the Na+ transport kinetics and structural stability of layered oxide cathodes for sodium storage.

12.
J Colloid Interface Sci ; 607(Pt 2): 1109-1119, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34571298

ABSTRACT

The development of durable and stable metal oxide anodes for potassium ion batteries (PIBs) has been hampered by poor electrochemical performance and ambiguous reaction mechanisms. Herein, we design and fabricate molybdenum dioxide (MoO2)@N-doped porous carbon (NPC) nano-octahedrons through metal-organic frameworks derived strategy for PIBs with MoO2 nanoparticles confined within NPC nano-octahedrons. Benefiting from the synergistic effect of nanoparticle level of MoO2 and N-doped carbon porous nano-octahedrons, the MoO2@NPC electrode exhibits superior electron/ion transport kinetics, excellent structural integrity, and impressive potassium-ion storage performance with enhanced cyclic stability and high-rate capability. The density functional theory calculations and experiment test proved that MoO2@NPC has a higher affinity of potassium and higher conductivity than MoO2 and N-doped carbon electrodes. Kinetics analysis revealed that surface pseudocapacitive contributions are greatly enhanced for MoO2@NPC nano-octahedrons. In-situ and ex-situ analysis confirmed an intercalation reaction mechanism of MoO2@NPC for potassium ion storage. Furthermore, the assembled MoO2@NPC//perylenetetracarboxylic dianhydride (PTCDA) full cell exhibits good cycling stability with 72.6 mAh g-1 retained at 100 mA g-1 over 200 cycles. Therefore, this work present here not only evidences an effective and viable structural engineering strategy for enhancing the electrochemical behavior of MoO2 material in PIBs, but also gives a comprehensive insight of kinetic and mechanism for potassium ion interaction with metal oxide.

13.
ACS Appl Mater Interfaces ; 13(33): 39480-39490, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34382789

ABSTRACT

Li-rich Mn-based layered oxide cathodes (LLOs) are considered to be the most promising cathode candidates for lithium-ion batteries owing to their high-voltage platform and ultrahigh specific capacity originating from anionic redox. However, anionic redox results in many problems including irreversible oxygen release, voltage hysteresis, and so on. Although many efforts have been made to regulate anionic redox, a fundamental issue, the effect of lithium vacancies on anionic redox, is still unclear. Herein, we synthesized a series of LLO materials with different lithium vacancy contents by controlling the amount of lithium salt. Specifically, lithium-vacancy-type LLOs Li1.11Ni0.18Co0.18Mn0.53O2 with a pompon morphology exhibit an ultrahigh specific capacity (293.9 mA h g-1 at 0.1 C), an outstanding long-term cycling stability (173.5 mA h g-1 after 300 cycles at 1 C), and an excellent rate performance (106 mA h g-1 at 10 C). It reveals that lithium vacancy is a key factor to enhance anionic redox activity and reversibility. Lithium vacancies exhibit different inductive effects on the structure of the surface and bulk. Abundant surface oxygen vacancies and a surface spinel phase layer induced by lithium vacancies suppress irreversible oxygen release, while the bulk phase transformation and cation disorder combined with sufficient lithium vacancies in the bulk stabilize structure and improve anionic redox kinetic. The findings offer a significant theoretical guidance for the practical application of LLO materials.

14.
Chem Commun (Camb) ; 57(61): 7561-7564, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34250537

ABSTRACT

We report the synthesis of spent cathode carbon (SCC) with a NaF interface from aluminum electrolysis, and its application as a Na metal anode host. The SCC anode exhibits superior ion conductivity and a high shear modulus. The natural NaF interface on the SCC anode can regulate Na+ transmission and inhibit dendrite growth. Furthermore, the anode can be used to turn waste into treasure through directly using spent cathodic carbon without any chemical processing. The green SCC electrode exhibits a higher flat voltage and better reversibility compared with purified cathode carbon without NaF.

15.
Acc Chem Res ; 53(10): 2106-2118, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32972128

ABSTRACT

Gold (Au), a transition metal with an atomic number of 79 in the periodic table of elements, was discovered in approximately 3000 B.C. Due to the ultrahigh chemical stability and brilliant golden color, Au had long been thought to be a most inert material and was widely utilized in art, jewelry, and finance. However, it has been found that Au becomes exceptionally active as a catalyst when its size shrinks to the nanometer scale. With continuous efforts toward the exploration of catalytic applications over the past decades, Au nanomaterials show critical importance in many catalytic processes. Besides catalysis, Au nanomaterials also possess other promising applications in plasmonics, sensing, biology and medicine, due to their unique localized surface plasmon resonance, intriguing biocompatibility, and superior stability. Unfortunately, the practical applications of Au nanomaterials could be limited because of the scarce reserves and high price of Au. Therefore, it is quite essential to further explore novel physicochemical properties and functions of Au nanomaterials so as to enhance their performance in different types of applications.Recently, phase engineering of nanomaterials (PEN), which involves the rearrangement of atoms in the unit cell, has emerged as a fantastic and effective strategy to adjust the intrinsic physicochemical properties of nanomaterials. In this Account, we give an overview of the recent progress on crystal phase control of Au nanomaterials using wet-chemical synthesis. Starting from a brief introduction of the research background, we first describe the development history of wet-chemical synthesis of Au nanomaterials and especially emphasize the key research findings. Subsequently, we introduce the typical Au nanomaterials with untraditional crystal phases and heterophases that have been observed, such as 2H, 4H, body-centered phases, and crystal-phase heterostructures. Importantly, crystal phase control of Au nanomaterials by wet-chemical synthesis is systematically described. After that, we highlight the importance of crystal phase control in Au nanomaterials by demonstrating the remarkable effect of crystal phases on their physicochemical properties (e.g., electronic and optical properties) and potential applications (e.g., catalysis). Finally, after a concise summary of recent advances in this emerging research field, some personal perspectives are provided on the challenges, opportunities, and research directions in the future.

16.
Small ; 16(25): e2001524, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32452618

ABSTRACT

Developing high-voltage cathode materials is critical for sodium-ion batteries to boost energy density. NASICON (Na super-ionic conductor)-structured Nax MnM(PO4 )3 materials (M represents transition metal) have drawn increasing attention due to their features of robust crystal framework, low cost, as well as high voltage based on Mn4+ /Mn3+ and Mn3+ /Mn2+ redox couples. However, full activation of Mn4+ /Mn3+ redox couple within NASICON framework is still a great challenge. Herein, a novel NASICON-type Na4 MnCr(PO4 )3 material with highly reversible Mn4+ /Mn3+ redox reaction is discovered. It proceeds a two-step reaction with voltage platforms centered at 4.15 and 3.52 V versus Na+ /Na, delivering a capacity of 108.4 mA h g-1 . The Na4 MnCr(PO4 )3 cathode also exhibits long durability over 500 cycles and impressive rate capability up to 10 C. The galvanostatic intermittent titration technique (GITT) test shows fast Na diffusivity which is further verified by density functional theory calculations. The high electrochemical activity derives from the 3D robust framework structure, fast kinetics, and pseudocapacitive contribution. The sodium storage mechanism of the Na4 MnCr(PO4 )3 cathode is deeply studied by ex situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS), revealing that both solid-solution and two-phase reactions are involved in the Na+ ions extraction/insertion process.

17.
Chem Soc Rev ; 49(8): 2342-2377, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32222751

ABSTRACT

Room-temperature sodium-ion batteries (SIBs) are regarded as promising candidates for smart grids and large-scale energy storage systems (EESs) due to their significant benefits of abundant and low-cost sodium resource. Among the previously reported cathode materials for SIBs, layered transition-metal oxides and polyanion-type materials are considered to be the most attractive options. Although many layered transition-metal oxides can provide high capacity due to their small molecular weight, their further application is hindered by low output voltage (mostly lower than 3.5 V), irreversible phase transition as well as storage instability. Comparatively, polyanion-type materials exhibit higher operating potentials due to the inductive effect of polyanion groups. Their robust 3D framework significantly decreases the structural variations during sodium ion de/intercalation. Moreover, the effect of strong X-O (X = S, P, Si, etc.) covalent bonds can effectively inhibit oxygen evolution. These advantages contribute to the superior cycle stability and high safety of polyanion-type materials. However, low electronic conductivity and limited capacity still restrict their further application. This review summarizes the recent progress of polyanion-type materials for SIBs, which include phosphates, fluorophosphates, pyrophosphates, mixed phosphates, sulfates, and silicates. We also discuss the remaining challenges and corresponding strategies for polyanion-type materials. We hope this review can provide some insights into the development of polyanionic materials.

18.
ACS Appl Mater Interfaces ; 11(39): 35746-35754, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31508930

ABSTRACT

Na4MnV(PO4)3 (denoted as NMVP) has drawn increasing attention owing to the three-dimensional framework and high theoretical capacity. Nevertheless, the inherent low electronic conductivity of NMVP impedes the scale-up commercial applications. In this work, the feasibility to achieve ultrahigh-rate capability and long lifespan by in situ embedding the intertwined carbon nanotube (CNT) matrix into the bulk of Na4MnV(PO4)3@C composites through a facile wet-chemical approach is reported. The elaborately prepared Na4MnV(PO4)3@C@CNTs cathode delivers a discharge capacity of 109.9 mA h g-1 at C/5 with an impressive rate capability of 68.9 mA h g-1 at an ultrahigh current rate of 90 C as well as a fascinating cycling performance of 68.3% capacity retention at 40 C after 4000 cycles. The optimum design of the 3D well-interconnected NMVP permitting fast kinetics for transported Na+/e- is beneficial to the excellent electrochemical performance, which is further studied by the galvanostatic intermittent titration technique, cyclic voltammetry, and electrochemical impedance spectra measurements. The pseudocapacitance contributions are also investigated. The research demonstrates that the dual-nanocarbon synergistically modified NMVP composite is expected to facilitate the commercialization of sodium-ion batteries.

19.
ACS Appl Mater Interfaces ; 10(29): 24564-24572, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29972297

ABSTRACT

The application of sodium-ion batteries (SIBs) requires a suitable cathode material with low cost, nontoxic, high safety, and high energy density, which is still a big challenge; thus, a basic research on exploring new types of materials is imperative. In this work, a manganic pyrophosphate and carbon compound Na3.12Mn2.44(P2O7)2/C has been synthesized through a feasible sol-gel method. Rietveld refinement reveals that Na3.12Mn2.44(P2O7)2 adopts a triclinic structure ( P1̅ space group), which possesses spacious ion diffusion channels for facile sodium migration. The off-stoichiometric phase is able to offer more reversible Na+, delivering an enhanced reversible capacity of 114 mA h g-1 at 0.1 C, and because of the strong "inductive effect" that (P2O7)4- groups imposing on the Mn3+/Mn2+ redox couple, Na3.12Mn2.44(P2O7)2/C presents high platforms above 3.6 V, contributing a remarkable energy density of 376 W h kg-1, which is among the highest Fe-/Mn-based polyanion-type cathode materials. Furthermore, the off-stoichiometric compound also presents satisfactory rate capability and long-cycle stability, with a capacity retention of 75% after 500 cycles at 5 C. Ex situ X-ray diffraction demonstrates a single-phase reaction mechanism, and the density functional theory calculations display two one-dimensional sodium migration paths with low energy barriers in Na3.12Mn2.44(P2O7)2, which is vital for the facile sodium storage. We believe that this compound will be a competitive cathode material for large-scale SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...