Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 109: 129857, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38909706

ABSTRACT

We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.


Subject(s)
Schizosaccharomyces , Structure-Activity Relationship , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Nitrogen/chemistry , Oxylipins/chemistry , Oxylipins/metabolism , Oxylipins/pharmacology , Oxylipins/chemical synthesis , Molecular Structure , Signal Transduction/drug effects
2.
Angew Chem Int Ed Engl ; 59(13): 5151-5158, 2020 03 23.
Article in English | MEDLINE | ID: mdl-31891659

ABSTRACT

Arsenene has recently emerged as a promising new two-dimensional material for biomedical applications because of its excellent optical and electronic properties. Herein, novel 2D arsenene nanosheets were synthesized and shown to be effective against NB4 promyelocytic leukaemia (APL) cells (82 % inhibition) as well as inducing apoptosis while showing no toxicity towards normal cells. The high zeta potential, small size, and the planar structure were crucial to the toxicity of the materials. Label-free proteomic profiling analysis suggested that arsenene affected nuclear DNA replication, nucleotide excision repair, and pyrimidine metabolism pathways by downregulating the DNA polymerases POLE, POLD1, POLD2, and POLD3. Mass spectrometric studies showed that arsenene bound mainly to nuclear nucleotide acid binding proteins in NB4 cells and further cellular fluorescence studies revealed that the arsenene destroyed the nuclei. In vivo toxicity tests in mice also indicated the physiological biosafety of arsenene.


Subject(s)
Antineoplastic Agents/chemistry , Arsenicals/chemistry , Leukemia, Promyelocytic, Acute/drug therapy , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/pharmacology , Cell Line, Tumor , Cell Nucleus/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Gene Expression Regulation/drug effects , Humans , Nuclear Proteins/metabolism , Proteomics , Pyrimidines/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...