Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Life (Basel) ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792616

ABSTRACT

Soil salinization poses a threat to the sustainability of agricultural production and has become a global issue. Cotton is an important cash crop and plays an important role in economic development. Salt stress has been harming the yield and quality of many crops, including cotton, for many years. In recent years, soil salinization has been increasing. It is crucial to study the mechanism of cotton salt tolerance and explore diversified materials and methods to alleviate the salt stress of cotton for the development of the cotton industry. Nanoparticles (NPs) are an effective means to alleviate salt stress. In this study, zinc oxide NPs (ZnO NPs) were sprayed on cotton leaves with the aim of investigating the intrinsic mechanism of NPs to alleviate salt stress in cotton. The results show that the foliar spraying of ZnO NPs significantly alleviated the negative effects of salt stress on hydroponic cotton seedlings, including the improvement of above-ground and root dry and fresh weight, leaf area, seedling height, and stem diameter. In addition, ZnO NPs can significantly improve the salt-induced oxidative stress by reducing the levels of MDA, H2O2, and O2- and increasing the activities of major antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Furthermore, RNA-seq showed that the foliar spraying of ZnO NPs could induce the expressions of CNGC, NHX2, AHA3, HAK17, and other genes, and reduce the expression of SKOR, combined with the CBL-CIPK pathway, which alleviated the toxic effect of excessive Na+ and reduced the loss of excessive K+ so that the Na+/K+ ratio was stabilized. In summary, our results indicate that the foliar application of ZnO NPs can alleviate high salt stress in cotton by adjusting the Na+/K+ ratio and regulating antioxidative ability. This provides a new strategy for alleviating the salt stress of cotton and other crops, which is conducive to the development of agriculture.

3.
Plants (Basel) ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732398

ABSTRACT

Boron toxicity significantly hinders the growth and development of cotton plants, therefore affecting the yield and quality of this important cash crop worldwide. Limited studies have explored the efficacy of ZnSO4 (zinc sulfate) and ZnO nanoparticles (NPs) in alleviating boron toxicity. Nanoparticles have emerged as a novel strategy to reduce abiotic stress directly. The precise mechanism underlying the alleviation of boron toxicity by ZnO NPs in cotton remains unclear. In this study, ZnO NPs demonstrated superior potential for alleviating boron toxicity compared to ZnSO4 in hydroponically cultivated cotton seedlings. Under boron stress, plants supplemented with ZnO NPs exhibited significant increases in total fresh weight (75.97%), root fresh weight (39.64%), and leaf fresh weight (69.91%). ZnO NPs positively affected photosynthetic parameters and SPAD values. ZnO NPs substantially reduced H2O2 (hydrogen peroxide) by 27.87% and 32.26%, MDA (malondialdehyde) by 27.01% and 34.26%, and O2- (superoxide anion) by 41.64% and 48.70% after 24 and 72 h, respectively. The application of ZnO NPs increased the antioxidant activities of SOD (superoxide dismutase) by 82.09% and 76.52%, CAT (catalase) by 16.79% and 16.33%, and POD (peroxidase) by 23.77% and 21.66% after 24 and 72 h, respectively. ZnO NP and ZnSO4 application demonstrated remarkable efficiency in improving plant biomass, mineral nutrient content, and reducing boron levels in cotton seedlings under boron toxicity. A transcriptome analysis and corresponding verification revealed a significant up-regulation of genes encoding antioxidant enzymes, photosynthesis pathway, and ABC transporter genes with the application of ZnO NPs. These findings provide valuable insights for the mechanism of boron stress tolerance in cotton and provide a theoretical basis for applying ZnO NPs and ZnSO4 to reduce boron toxicity in cotton production.

4.
Mol Plant ; 16(4): 694-708, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36772793

ABSTRACT

Comprehensive utilization of cottonseeds is limited by the presence of pigment glands and its inclusion gossypol. The ideal cotton has glandless seeds but a glanded plant, a trait found in only a few Australian wild cotton species, including Gossypium bickii. Introgression of this trait into cultivated species has proved to be difficult. Understanding the biological processes toward pigment gland morphogenesis and the associated underlying molecular mechanisms will facilitate breeding of cultivated cotton varieties with the trait of glandless seeds and glanded plant. In this study, single-cell RNA sequencing (scRNA-seq) was performed on 12 222 protoplasts isolated from cotyledons of germinating G. bickii seeds 48 h after imbibition. Clustered into 14 distinct clusters unsupervisedly, these cells could be grouped into eight cell populations with the assistance of known cell marker genes. The pigment gland cells were well separated from others and could be separated into pigment gland parenchyma cells, secretory cells, and apoptotic cells. By integrating the pigment gland cell developmental trajectory, transcription factor regulatory networks, and core transcription factor functional validation, we established a model for pigment gland formation. In this model, light and gibberellin were verified to promote the formation of pigment glands. In addition, three novel genes, GbiERF114 (ETHYLENE RESPONSE FACTOR 114), GbiZAT11 (ZINC FINGER OF ARABIDOPSIS THALIANA 11), and GbiNTL9 (NAC TRANSCRIPTION FACTOR-LIKE 9), were found to affect pigment gland formation. Collectively, these findings provide new insights into pigment gland morphogenesis and lay the cornerstone for future cotton scRNA-seq investigations.


Subject(s)
Gossypium , Transcriptome , Gossypium/genetics , Transcriptome/genetics , Australia , Plant Breeding , Transcription Factors/genetics , Gene Expression Regulation, Plant/genetics
5.
Plant Commun ; 4(1): 100421, 2023 01 09.
Article in English | MEDLINE | ID: mdl-35949167

ABSTRACT

The pigment gland is a morphological characteristic of Gossypium and its related genera. Gossypium bickii (G1) is characterized by delayed pigment gland morphogenesis in the cotyledons. In this study, a reference-grade genome of G1 was generated, and comparative genomics analysis showed that G1 was closest to Gossypium australe (G2), followed by A- and D-genome species. Two large fragment translocations in chromosomes 5 and 13 were detected between the G genome and other Gossypium genomes and were unique to the G1 and G2 genomes. Compared with the G2 genome, two large fragment inversions in chromosomes 12 and 13 were detected in G1. According to the phylogeny, divergence time, and similarity analysis of nuclear and chloroplast genomes, G1 was formed by hybridization between Gossypium sturtianum (C1) and a common ancestor of G2 and Gossypium nelsonii (G3). The coordinated expression patterns of pigment gland formation (GoPGF) and gossypol biosynthesis genes in G1 were verified to be consistent with its phenotype, and nine genes that were related to the process of pigment gland formation were identified. A novel gene, GbiCYP76B6, regulated by GoPGF, was found to affect gossypol biosynthesis. These findings offer insights into the origin and evolution of G1 and its mechanism of pigment gland formation and gossypol biosynthesis.


Subject(s)
Gossypium , Gossypol , Gossypium/genetics , Hybridization, Genetic , Cell Nucleus , Evolution, Molecular
6.
Plants (Basel) ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451539

ABSTRACT

Cotton is a potential and excellent candidate to balance both agricultural production and remediation of mercury-contained soil, as its main production fiber hardly involves into food chains. However, in cotton, there is known rarely about the tolerance and response to mercury (Hg) environments. In this study, the biochemical and physiological damages, in response to Hg concentrations (0, 1, 10, 50 and 100 µM), were investigated in upland cotton seedlings. The results on germination of cottonseeds indicated the germination rates were suppressed by high Hg levels, as the decrease of percentage was more than 10% at 1000 µM Hg. Shoots and roots' growth were significantly inhibited over 10 µM Hg. The inhibitor rates (IR) in fresh weight were close in values between shoots and roots, whereas those in dry weight the root growth were more obviously influenced by Hg. In comparison of organs, the growth inhibition ranked as root > leaf > stem. The declining of translocation factor (TF) opposed the Hg level as even low to 0.05 at 50 µM Hg. The assimilation in terms of photosynthesis, of cotton plants, was affected negatively by Hg, as evidenced from the performances on pigments (chlorophyll a and b) and gas exchange (Intercellular CO2 concentration (Ci), CO2 assimilation rate (Pn) and stomatal conductance (Gs)). Sick phenotypes on leaf surface included small white zone, shrinking and necrosis. Membrane lipid peroxidation and leakage were Hg dose-dependent as indicated by malondialdehyde (MDA) content and relative conductivity (RC) values in leaves and roots. More than 10 µM Hg damaged antioxidant enzyme system in both leaves and roots (p < 0.05). Concludingly, 10 µM Hg post negative consequences to upland cotton plants in growth, physiology and biochemistry, whereas high phytotoxicity and damage appeared at more than 50 µM Hg concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...