Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(11): 8042-8048, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34038634

ABSTRACT

Many crystalline molecular rotors have been developed in the past decades. However, manipulating the rotational gesture that intrinsically controls the physical performance of materials remains a challenge. Herein, we report a series of crystalline rotors whose rotational gestures can be modulated by modifying the structures of molecular stators. In these dynamic crystals, the ox2- (ox2- = oxalate anion) behave as molecular rotators performing axial-free rotation in cavities composed of five complex cations, [MII(en)3]2+ (en = ethylenediamine). The structure of [MII(en)3]2+ that serves as a molecular stator can be tuned by varying the metal center with different ionic radii, consequently altering the chemical environment around the molecular rotator. Owing to the quasi-transverse isotropy of ox2- and multiple hydrogen-bond interactions around it, the molecular rotator exhibits unusual motional malleability, i.e., it can rotate either longitudinally in the compound of ZnII, or with a tilt angle of 42° in the compound of FeII, or even laterally in the compound of CdII. The atypical dynamic behavior demonstrated here provides a new chance for the development of exquisite crystalline molecular rotors with advanced tunable functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...