Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Environ Pollut ; 350: 124002, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636834

ABSTRACT

Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.


Subject(s)
Environmental Pollutants , Food Contamination , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , China , Animals , Humans , Food Contamination/analysis , Food Contamination/statistics & numerical data , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Polychlorinated Dibenzodioxins/analysis , Risk Assessment , Dietary Exposure/statistics & numerical data , Adult , Child , Environmental Monitoring , Eggs/analysis
2.
Environ Res ; 249: 118431, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38346481

ABSTRACT

Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.


Subject(s)
Plants , Humans , Plants/metabolism , Esters/metabolism , Organophosphates/metabolism , Environmental Pollutants/metabolism
3.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223121

ABSTRACT

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

4.
Environ Pollut ; 341: 122933, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37977360

ABSTRACT

Owing to their dominant wastewater origin, bioavailability, and toxicity, the occurrence and behavior of organophosphate esters (OPEs) in aquatic systems have attracted considerable attention over the past two decades. Aquatic plants can accumulate and metabolize OPEs in water, thereby playing an important role in their behavior and fate in waterbodies. However, their uptake, translocation and transformation mechanisms in plants remain incompletely characterized. We investigated the accumulation and transformation of OPEs in water hyacinth (Eichhornia crassipes) through a series of hydroponic experiments using three representative OPEs, tris(2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPP). These OPEs can not only be adsorbed onto and enter plant roots via passive diffusion pathways, which are facilitated by anion channels and/or aquaporins, but also can return to the solution when concentration gradients exist. After entry, hydrophilic TCEP showed a dominant distribution in the cell sap, strong acropetal transportability, and rapid translocation rate, whereas hydrophobic TPP was mostly retained in the root cell wall and therefore demonstrated weak acropetal transportability; TBEP with moderate hydrophilicity remained in the middle. All these OPEs can be transformed into diesters, which presented higher proportions in the cell sap and therefore have stronger acropetal transferability than their parent OPEs. TCEP exhibits the lowest biodegradability, followed by TPP and TBEP. These OPEs exerted apparent effects on plant growth, photosynthesis, and the diversity and composition of the rhizosphere microbial community.


Subject(s)
Eichhornia , Flame Retardants , Hydroponics , Esters/metabolism , Organophosphates/metabolism
5.
Int Immunopharmacol ; 125(Pt A): 111143, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913569

ABSTRACT

BACKGROUND: Sepsis is a critical systemic inflammatory syndrome which usually leads to multiple organ dysfunction. Caffeic acid (CA), a phenolic compound derived from various plants, has been proved to be essential in neuroprotection, but its role in septic organ damage is unclear. This research aimed to investigate whether CA protects against organ injury in a mouse model of cecal ligation and puncture (CLP). METHODS: CA (30 mg/kg) or vehicle was administered by intraperitoneal injection immediately after CLP. The samples of blood, lungs, and livers were collected 24 h later. Organ injury was assessed by histopathological examination (HE staining), neutrophil infiltration (myeloperoxidase fluorescence), oxidative stress levels (MDA, SOD, HO-1), and inflammatory cytokines (TNF-α, IL-1ß, and IL-6) release in lung and liver tissues. Neutrophil extracellular trap (NET) formation was analyzed by immunofluorescence. In vitro experiments were performed to investigate the potential mechanisms of CA using small interfering RNA (siRNA) techniques in neutrophils, and the effect of CA on neutrophil apoptosis was analyzed by flow cytometry. RESULTS: Results showed that CA treatment improved the 7-day survival rate and attenuated the histopathological injury in the lung and liver of CLP mice. CA significantly reduced neutrophil infiltration in the lungs and livers of CLP mice. TNF-α, IL-1ß, IL-6 and LTB4 were reduced in serum, lung, and liver of CA-treated CLP mice, and phosphorylation of MAPK (p38, ERK, JNK) and p65 NF-κB was inhibited in lungs and livers. CA treatment further increased HO-1 levels and enhanced superoxide dismutase (SOD) activity, but reduced malondialdehyde (MDA) levels and NET formation. Similarly, in vitro experiments showed that CA treatment and 5-LOX siRNA interference inhibited inflammatory activation and NET release in neutrophils, suppressed MAPK and NF-κB phosphorylation in LPS-treated neutrophils, and decreased LTB4 and cfDNA levels. Flow cytometric analysis revealed that CA treatment reversed LPS-mediated delayed apoptosis in human neutrophils, and Western blot also indicated that CA treatment inhibited Bcl-2 expression but increased Bax expression. CA treatment did not induce further changes in neutrophil apoptosis, inflammatory activation, and NET release when 5-LOX was knocked down by siRNA interference. CONCLUSIONS: CA has a protective effect on lung and liver injury in a murine model of sepsis, which may be related to inhibition of the 5-LOX/LTB4 pathway.


Subject(s)
Neutrophils , Sepsis , Humans , Mice , Animals , Neutrophils/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Leukotriene B4 , Interleukin-6 , Lipopolysaccharides , Sepsis/metabolism , RNA, Small Interfering , Superoxide Dismutase , Mice, Inbred C57BL
6.
Environ Pollut ; 336: 122492, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37659627

ABSTRACT

In the past decade, organophosphate esters (OPEs) undergo rapid increase in production and use. Meanwhile, owing to their additive property, OPEs exhibit liability to escape from related products and therefore ubiquity in various environments. Moreover, numerous researches verify their bioavailability and negative effects on biota and human, hence their occurrence and associated risks have caught much concern, particularly those in aquatic systems. So far, however, OPEs in water are generally investigated as a whole, their phase distribution and behavior in waterbodies are incompletely characterized. We examined 25 OPEs in water (including dissolved and particulate phases), sediment, and sediment core samples from the Lian River, which flows through the Guiyu e-waste recycling zone and Shantou specific economic zone in South China. Compared to most global waterbodies, the Lian River showed high or ultrahigh OPE levels in both water and sediments, particularly in the reaches surrounded by e-waste recycling and plastic-related industries, which were the top two greatest OPE sources. Non-industrial and agriculture-related anthropogenic activities also contributed OPEs. Sediment core data suggested that OPEs have been present in waters in Guiyu since the 1960s and showed a temporal trend consistent with the local waste-recycling business. The phase distribution of OPEs in the Lian River was significantly correlated with their hydrophobicity and solubility. Owing to their wide range of physicochemical properties, OPE congeners showed significant percentage differences in the Lian River water and sediments. Generally, OPEs in water reflect their dynamic real-time inputs, while those in sediment signify their accumulative deposition, which is another cause of their phase distribution disparities in the Lian River. The physicochemical parameters of OPEs first imposed negative and then positive influences on their dissolved phase-sediment distribution, indicating the involvement of both the adsorption of dissolved OPEs and the deposition of particle-bound OPEs.

7.
Sci Total Environ ; 904: 166933, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37709096

ABSTRACT

China's takeaway food industry is growing rapidly, and bringing unprecedented demand for plastic packaging, which results in serious plastic pollution and increasing emissions of plasticizers of phthalate esters (PAEs) and greenhouse gases (GHGs). This study assesses the current and future situation of plastic usage for takeaway food packaging in China, and also analyzes the PAEs and GHG emissions brought by these plastics under different scenarios. From 2010 to 2020, the plastic usage grew from 2.92 to 101 × 104 tons, and brought 112-3845 kg PAEs and 43.6-1438 kt CO2e GHG emissions. Their distribution exhibited a clear 'two-line' pattern: higher features mostly located in Beijing-Guangzhou and Beijing-Shanghai railways. The socio-economic factors model performed better than the growth rate model for plastic usage prediction from 2021 to 2060. It is predicted that 40.6 Mt. plastic would be consumed in 2060, and they will bring 155 tons PAEs and 37.0 Mt. CO2e GHGs. At that time, biodegradable plastic replaced or plastic cycling cannot significantly contribute to national carbon reduction, unless using a temperature change of 2 °C scenario. Our work improves the understanding of PAEs and GHG emission from plastic pollution, and provides insight into long-term dynamics in the plastics management of takeaway food industry.


Subject(s)
Environmental Pollution , Greenhouse Gases , China , Plasticizers , Food Industry , Plastics
8.
Food Funct ; 14(16): 7535-7549, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37526032

ABSTRACT

Citrus reticulata var. depressa, commonly known as Hirami lemon, is a native citrus species found in Taiwan and Okinawa islands of Japan. While several Citrus species are known to possess antidepressant activity by modulating the gut microbiota, the antidepressant effect of Hirami lemon and its underlying mechanisms have not been thoroughly investigated. In this study, we explored the potential antidepressant efficacy of the fruit extract (CD) and the essential oil (CDE) from Hirami lemon peel using a chronic mild stress (CMS)-induced mouse model and analyzed the association of gut microbiome changes. Our findings revealed that mice subjected to CMS exhibited anxiety- and depression-like behaviors as assessed by elevated plus-maze and forced swimming tests, respectively. Significantly, oral administration of CDE and CD notably reversed CMS-induced depression- and anxiety-like behaviors in CMS-induced mice. Moreover, compared to the non-stressed group, CMS significantly altered the gut microbiome, characterized by highly diverse bacterial communities, reduced Bacteroidetes, and increased Firmicutes. However, oral administration of CDE and CD restored gut microbiota dysbiosis. We also performed a qualitative analysis of CD and CDE using UPLC-MS and GC-MS, respectively. The CD contained 25 compounds, of which 3 were polymethoxy flavones and flavanones. Three major compounds, nobiletin, tangeretin and hesperidin, accounted for 56.88% of the total relative peak area. In contrast, the CDE contained 11 terpenoids, of which 8 were identified as major compounds, with D-limonene (45.71%) being the most abundant, followed by γ-terpinene (34.65%), linalool (6.46%), p-cymene (2.57%), α-terpineol (2.04%), α-pinene (1.89%), α-terpinolene (1.46%), and ß-pinene (1.16%), accounting for 95.94% of the total oil. In conclusion, our study demonstrated the potential of Hirami lemon as a source of natural antidepressant agents for the prevention and treatment of major depressive disorders.

9.
Environ Int ; 178: 108104, 2023 08.
Article in English | MEDLINE | ID: mdl-37490788

ABSTRACT

Municipal solid waste incinerator (MSWI) not only is deemed one of the uppermost sources of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), but also produces substantial amount of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) owing to the existence of brominated flame retardants (BFRs) in the waste. So far, however, PBDD/Fs in the vicinal environments of MSWI and their associated risks remain rarely studied. Based on a one-year passive air sampling (PAS) scheme, we investigated airborne PBDD/Fs and PCDD/Fs around a large-scale MSWI that has been operated for multi-years. Both the concentrations of PBDD/Fs and PCDD/Fs showed spatially decreasing trends with the distance away from the MSWI, confirming the influence of the MSWI on the dioxin levels in its ambient air. But its influence on PBDD/Fs was less because PBDD/Fs exhibit lower volatility and therefore lower gaseous concentrations than PCDD/Fs. Compared to the existing global data of airborne PCDD/Fs and PBDD/Fs, our data of the MSWI vicinity were at medium levels, despite PAS samples only represent the concentrations of gaseous dioxins in theory. The seasonal data suggest that meteorological conditions exerted apparent influences over the concentrations and sources of airborne dioxins around the MSWI. As for PCDD/Fs, the MSWI was diagnosed as their uppermost source, followed by local traffic and volatilization/deposition. Whereas the top three PBDD/F sources were related to PBDEs, bromophenol/bromobenzene, and traffic vehicles, respectively. The bioassay-derived TEQs based on the aryl hydrocarbon receptor activation of airborne dioxins around the MSWI were one or two orders of magnitudes higher than their concentration-based TEQs, and the corresponding carcinogenic risks at some MSWI-vicinal sites exceeded the acceptable threshold proposed by the U. S. EPA (10-6 âˆ¼ 10-4) and deserve continuous attention.


Subject(s)
Air Pollutants , Dioxins , Polychlorinated Dibenzodioxins , Dioxins/analysis , Polychlorinated Dibenzodioxins/analysis , Solid Waste , Dibenzofurans/analysis , Carcinogens , Environmental Monitoring , Sampling Studies , Air Pollutants/analysis , Incineration , Gases/analysis , Dibenzofurans, Polychlorinated/analysis
10.
Redox Biol ; 63: 102745, 2023 07.
Article in English | MEDLINE | ID: mdl-37201414

ABSTRACT

Sepsis-associated encephalopathy (SAE) is one of the common serious complications in sepsis, and the pathogenesis of SAE remains unclear. Sirtuin 1 (SIRT1) has been reported to be downregulated in the hippocampus and SIRT1 agonists can attenuated the cognitive dysfunction in septic mice. Nicotinamide adenine dinucleotide (NAD+) is a key substrate to maintain the deacetylation activity of SIRT1. As an intermediate of NAD+, ß-Nicotinamide Mononucleotide (NMN) has been reported to be promising in treating neurodegenerative diseases and cerebral ischemic injury. Thus we sought to investigate the potential role of NMN in SAE treatment. The SAE model was established by cecal ligation and puncture (CLP) in vivo, and neuroinflammation model was established with LPS-treated BV-2 cells in vitro. Memory impairment was assessed by Morris water maze and fear conditioning tests. As a result, the levels of NAD+, SIRT1 and PGC-1α were significantly reduced in the hippocampus of septic mice, while the acetylation of total lysine, phosphorylation of P38 and P65 were enhanced. All these changes induced by sepsis were inverted by NMN. Treating with NMN resulted in improved behavior performance in the fear conditioning tests and Morris water maze. Apoptosis, inflammatory and oxidative responses in the hippocampus of septic mice were attenuated significantly after NMN administration. These protective effect of NMN against memory dysfunction, inflammatory and oxidative injuries were reversed by the SIRT1 inhibitor, EX-527. Similarly, LPS-induced activation of BV-2 cells were attenuated by NMN, EX-527 or SIRT1 knockdown could reverse such effect of NMN in vitro. In conclusion, NMN is protective against sepsis-induced memory dysfunction, and the inflammatory and oxidative injuries in the hippocampus region of septic mice. The NAD+/SIRT1 pathway might be involved in one of the mechanisms of the protective effect.


Subject(s)
Brain Ischemia , Sepsis , Animals , Mice , Hippocampus/metabolism , Lipopolysaccharides/pharmacology , NAD/metabolism , Nicotinamide Mononucleotide/pharmacology , Oxidative Stress , Sepsis/complications , Sepsis/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology
11.
Int J Biol Sci ; 19(5): 1413-1429, 2023.
Article in English | MEDLINE | ID: mdl-37056920

ABSTRACT

Sepsis-associated encephalopathy (SAE), as shown as acute and long-term cognitive impairment, is associated with increased mortality of sepsis. The causative factors of SAE are diverse and the underlying pathological mechanisms of SAE remain to be fully elucidated. Multiple studies have demonstrated a crucial role of microglia in the development of SAE, but the role of neutrophils and neutrophil extracellular traps (NETs) in SAE is still unclear. Here, we firstly show that in murine sepsis model, neutrophils and NETs promote blood-brain barrier (BBB) disruption, neuronal apoptosis and microglia activation in hippocampus and induce hippocampus-dependent memory impairment. Anti-Gr-1 antibody or DNase I treatment attenuates these sepsis-induced changes. Then, we find that genetic deletion of neutrophil GSDMD or PD-L1 reduces NET release and improves SAE in murine sepsis model. Finally, in human septic neutrophils, p-Y705-Stat3 binds to PD-L1, promotes PD-L1 nuclear translocation and enhances transcription of the gasdermin D (GSDMD) gene. In summary, our findings firstly identify a novel function of PD-L1 in maintaining transcriptional activity of p-Y705-Stat3 to promote GSDMD-dependent NET release in septic neutrophils, which plays a critical role in the development of SAE.


Subject(s)
Extracellular Traps , Sepsis-Associated Encephalopathy , Sepsis , Mice , Humans , Animals , Sepsis-Associated Encephalopathy/genetics , Sepsis-Associated Encephalopathy/complications , Sepsis-Associated Encephalopathy/metabolism , Extracellular Traps/metabolism , B7-H1 Antigen/metabolism , Sepsis/complications , Sepsis/genetics , Sepsis/metabolism , Apoptosis , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins/metabolism
12.
Front Immunol ; 14: 1112196, 2023.
Article in English | MEDLINE | ID: mdl-36891309

ABSTRACT

Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.


Subject(s)
Respiratory Distress Syndrome , Sepsis , Animals , Mice , Neutrophils/metabolism , N-Formylmethionine Leucyl-Phenylalanine/metabolism , Sepsis/complications , Sepsis/metabolism , Receptors, G-Protein-Coupled/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism
13.
Environ Sci Pollut Res Int ; 30(1): 685-698, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35904735

ABSTRACT

This study aimed to investigate the association between pyrethroid exposure and the risk of depressive symptoms in adults in the USA. Data of participants aged ≥20 years (n = 6455) from the National Health and Nutrition Examination Survey (NHANES, 2007-2014) were included. 3-Phenoxybenzoic acid (3-PBA), an adequately detected pyrethroid metabolite, was used as a biomarker to assess pyrethroid exposure. Depressive symptoms were defined as the Patient's Health Questionnaire (PHQ-9) total score ≥10 or use of antidepressant. Multivariable logistic regression analyses were performed to examine the association between urinary 3-PBA levels and the risk of depressive symptoms. In this study, 1150 participants (weighted frequency, 18.45%) developed depressive symptoms. Participants in the highest tertile have a higher risk of depressive symptoms than those in the lowest tertile of urinary 3-PBA and weighted OR of 1.28 (95% CI, 1.00-1.63, P=0.019). There was a nonlinear association between urinary 3-PBA and depressive symptoms (P for nonlinearity = 0.034). Mediation analysis showed the mediating effect of trouble sleeping on the association of urinary 3-PBA with depressive symptoms was 28.8% (P = 0.006). Our findings indicate that pyrethroid exposure is associated with the increased risk of depressive symptoms, and trouble sleeping may mediated this association. Further studies should be conducted to validate our findings and elucidate their underlying mechanisms.


Subject(s)
Insecticides , Pyrethrins , Adult , Humans , Nutrition Surveys , Depression/chemically induced , Depression/epidemiology , Benzoates , Insecticides/metabolism
14.
J Surg Res ; 283: 9-18, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36347171

ABSTRACT

INTRODUCTION: Nicotinamide mononucleotide (NMN) is a nucleotide that is commonly recognized for its role as an intermediate of nicotinamide adenine dinucleotide (NAD+) biosynthesis with multiple pharmacological effects. The purpose of this study was to evaluate the protective effect of nicotinamide mononucleotide (NMN) against lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS: We investigated the effect of NMN on ALI-induced inflammatory response, oxidative stress, and cell apoptosis. The ALI mouse model was performed by injecting LPS intratracheally at a dose of 10 mg/kg in 50 µL saline. Flow cytometry was used to detect neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and ELISA was used to detect the contents of inflammatory cytokines TNF-α, IL-1ß and IL-6 in BALF. Oxidative stress was evaluated by determining the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in lung tissue. ROS formation was analyzed by immunofluorescence. Western blotting was performed to detect apoptotic levels and p38MAPK/NF-κB phosphorylation levels in lung tissue. RESULTS: In the ALI mouse model, NMN showed a significant therapeutic effect compared to the LPS group. NMN attenuated the pathological damage and cell apoptosis in lung tissue, decreased the levels of TNF-α, IL-1ß, and IL-6 in BALF, and reduced the number of total cells and neutrophils in BALF. In addition, NMN attenuated the LPS-induced elevation of dry-to-wet ratio, MDA content, p38 MAPK and p65 NF-κB phosphorylation levels, and the SOD activity was increased by NMN treatment. CONCLUSIONS: In conclusion, the present study showed that NMN exerted a protective effect on LPS-induced ALI with anti-inflammatory, antioxidative, and antiapoptotic effects.


Subject(s)
Acute Lung Injury , Nicotinamide Mononucleotide , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Interleukin-6 , Lipopolysaccharides , Lung/pathology , NF-kappa B , Nicotinamide Mononucleotide/pharmacology , p38 Mitogen-Activated Protein Kinases , Superoxide Dismutase/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
15.
Front Immunol ; 13: 963955, 2022.
Article in English | MEDLINE | ID: mdl-36059483

ABSTRACT

Sepsis is a prevalent disease that has alarmingly high mortality rates and, for several survivors, long-term morbidity. The modern definition of sepsis is an aberrant host response to infection followed by a life-threatening organ dysfunction. Sepsis has a complicated pathophysiology and involves multiple immune and non-immune mediators. It is now believed that in the initial stages of sepsis, excessive immune system activation and cascading inflammation are usually accompanied by immunosuppression. During the pathophysiology of severe sepsis, neutrophils are crucial. Recent researches have demonstrated a clear link between the process of neutrophil cell death and the emergence of organ dysfunction in sepsis. During sepsis, spontaneous apoptosis of neutrophils is inhibited and neutrophils may undergo some other types of cell death. In this review, we describe various types of neutrophil cell death, including necrosis, apoptosis, necroptosis, pyroptosis, NETosis, and autophagy, to reveal their known effects in the development and progression of sepsis. However, the exact role and mechanisms of neutrophil cell death in sepsis have not been fully elucidated, and this remains a major challenge for future neutrophil research. We hope that this review will provide hints for researches regarding neutrophil cell death in sepsis and provide insights for clinical practitioners.


Subject(s)
Neutrophils , Sepsis , Humans , Inflammation/metabolism , Multiple Organ Failure/metabolism , Pyroptosis
16.
Oxid Med Cell Longev ; 2022: 7411824, 2022.
Article in English | MEDLINE | ID: mdl-35910849

ABSTRACT

Salvianolic acid A (SAA) is one of bioactive polyphenol extracted from a Salvia miltiorrhiza (Danshen), which was widely used to treat cardiovascular disease in traditional Chinese medicine. SAA has been reported to be protective in cardiovascular disease and ischemia injury, with anti-inflammatory and antioxidative effect, but its role in acute lung injury (ALI) is still unknown. In this study, we sought to investigate the therapeutic effects of SAA in a murine model of lipopolysaccharide- (LPS-) induced ALI. The optimal dose of SAA was determined by comparing the attenuation of lung injury score after administration of SAA at three different doses (low, 5 mg/kg; medium, 10 mg/kg; and, high 15 mg/kg). Dexamethasone (DEX) was used as a positive control for SAA. Here, we showed that the therapeutic effect of SAA (10 mg/kg) against LPS-induced pathologic injury in the lungs was comparable to DEX. SAA and DEX attenuated the increased W/D ratio and the protein level, counts of total cells and neutrophils, and cytokine levels in the BALF of ALI mice similarly. The oxidative stress was also relieved by SAA and DEX according to the superoxide dismutase and malondialdehyde. NET level in the lungs was elevated in the injured lung while SAA and DEX reduced it significantly. LPS induced phosphorylation of Src, Raf, MEK, and ERK in the lungs, which was inhibited by SAA and DEX. NET level and phosphorylation level of Src/Raf/MEK/ERK pathway in the neutrophils from acute respiratory distress syndrome (ARDS) patients were also inhibited by SAA and DEX in vitro, but the YEEI peptide reversed the protective effect of SAA completely. The inhibition of NET release by SAA was also reversed by YEEI peptide in LPS-challenged neutrophils from healthy volunteers. Our data demonstrated that SAA ameliorated ALI via attenuating inflammation, oxidative stress, and neutrophil NETosis. The mechanism of such protective effect might involve the inhibition of Src activation.


Subject(s)
Acute Lung Injury , Caffeic Acids , Extracellular Traps , Lactates , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Caffeic Acids/pharmacology , Cardiovascular Diseases/pathology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Lactates/pharmacology , Lipopolysaccharides/toxicity , Lung/pathology , Mice , Mitogen-Activated Protein Kinase Kinases , Neutrophils/metabolism
17.
Sci Rep ; 12(1): 13245, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918393

ABSTRACT

The TBC (Tre-2/Bub2/Cdc16, TBC) structural domain is now considered as one of the factors potentially regulating tumor progression. However, to date, studies on the relationship between TBC structural domains and tumors are limited. In this study, we identified the role of TBC1 domain family member 8 (TBC1D8) as an oncogene in colorectal cancer (CRC) by least absolute shrinkage and selection operator (LASSO) and Cox regression analysis, showing that TBC1D8 may independently predict CRC outcome. Functional enrichment and single-cell analysis showed that TBC1D8 levels were associated with hypoxia. TBC1D8 levels were also positively correlated with M2 macrophage infiltration, which may have a complex association with hypoxia. Taken together, these results show that the TBC1D8 gene is involved in colorectal carcinogenesis, and the underlying molecular mechanisms may include hypoxia and immune cell infiltration.


Subject(s)
Colorectal Neoplasms , GTPase-Activating Proteins , Centers for Disease Control and Prevention, U.S. , Colorectal Neoplasms/genetics , GTPase-Activating Proteins/metabolism , Humans , Hypoxia/genetics , United States , rab GTP-Binding Proteins/metabolism
18.
Mitochondrial DNA B Resour ; 6(11): 3267-3268, 2021.
Article in English | MEDLINE | ID: mdl-34712806

ABSTRACT

Amaranthus dubius is a leafy vegetable widely cultivated in Asia and Africa. The complete chloroplast genome of Amaranthus dubius was sequenced and assembled in this study. The complete chloroplast genome is 150,520 bp. A total of 130 genes were identified, including 85 protein-coding genes, eight rRNA genes, and 37 tRNA genes. The overall GC content of this genome was 36.6%. The phylogenetic tree based on 10 chloroplast genomes in Amaranthaceae supports that A. dubius is sister to A. hypochondriacus and A. caudatus.

19.
Environ Sci Technol ; 55(18): 12459-12470, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34514800

ABSTRACT

Agricultural plastic films have been proven highly advantageous, but they also cause pollution of plastic debris and associated chemicals. Phthalates (phthalic acid esters, PAEs), an important additive of agricultural films, can be released and contaminate the environment. Here, we analyzed the agricultural plastic usage and assessed plastic debris in China and developed a method to estimate PAE emissions from agricultural films. Additionally, the environmental fate of PAEs was evaluated using a fugacity-based multimedia model. The agricultural plastic film usage in China in 2017 was 2,528,600 tons. After agricultural film recycling and water erosion, the plastic debris amount was estimated as 465,016 tons. The water erosion process carried 4329 tons of plastic debris into the aquatic environment. During its lifetime, the agricultural film released a total of 91.5 tons of two typical types of PAEs. PAEs from the mulching film would mostly be removed through degradation, while those from the greenhouse film accumulate in vegetables. Populated regions exhibited more serious PAE pollution in vegetables but with no immediate health risks. The model was well evaluated using comparable measured concentrations and uncertainty analysis based on the Monte Carlo method. The findings from this study demonstrate the serious agricultural plastic pollution problem and associated PAE contamination in China.


Subject(s)
Phthalic Acids , Soil Pollutants , China , Esters , Plastics , Soil Pollutants/analysis
20.
Antonie Van Leeuwenhoek ; 114(9): 1443-1452, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34272636

ABSTRACT

A Gram-negative aerobic bacterium, strain M30-35 T, was isolated from the rhizosphere of Haloxylon ammodendron in Tengger desert, Gansu province, northwest China. Our previous research indicated that strain M30-35 T can promote the growth of ryegrass (Lolium perenne L.). In this study, strain M30-35 T was subjected to a polyphasic taxonomic study. Phylogenetic analysis of the 16S rRNA gene and two other housekeeping genes (gyrB, rpoD) showed that strain M30-35 T is a member of Pseudomonas anguilliseptica group. The average nucleotide identity (ANI) scores for strains KMM 3042 T and FR1439T were 76.5% and 83.7%, respectively, and DNA-DNA hybridization (DDH) were 21.6% and 26.6%, respectively, and the rates were less than the threshold range for species determination. The dominant cellular fatty acids of strain M30-35 T were C16:0 (22.7%), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 18.5%), summed feature 8 (C18:1ω7c and/or C18:1ω6c; 23.1%). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and aminophospholipid and the predominant respiratory quinone was ubiquinone (Q9). On the basis of above data, it can be concluded that strain M30-35 T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas rhizovicinus sp. nov. is proposed. The type strain is M30-35 T (= MCCC 1K03247T = KCTC 52664 T).


Subject(s)
Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids , Phospholipids , Phylogeny , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...