Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 384: 129358, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336449

ABSTRACT

Bacterial communities were dynamically tracked at four stages of biochar-driven sheep manure pile composting, and the co-occurrence networks with keystone taxa were established. The succession of bacterial community obvious varied during the composting process, Proteobacteria predominant in initial stage (39%) then shifted into Firmicutes in thermophilic (41%) and mesophilic (27%) stages, finally the maturation stage dominant by Bacteroidota (26%). Visualizations of bacterial co-occurrence networks demonstrate more cooperative mutualism and complex interactions in the thermophilic and mesophilic phases. Noticeably, the 7.5 and 10% biochar amended composts shown highest connections (736 and 663 total links) and positive cooperation (97.37 and 97.13% positive link) as well as higher closeness centrality and betweenness centrality of keystone taxa. Overall, appropriate biochar addition alters bacterial community succession and strengthens connection between keystone taxa and other bacteria, with 7.5 and 10% biochar amended composts has intense mutualistic symbiosis among bacterial communities.


Subject(s)
Composting , Animals , Sheep , Bacteria , Charcoal , Manure/microbiology , Soil
2.
Int J Food Microbiol ; 381: 109890, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36095867

ABSTRACT

Blueberry (Vaccinium spp.) is one of the five major healthy foods for humans and is recognized as the "king of the world fruit", which has attracted great interest in the phytogenic prebiotics market. Blueberry fruit is favored for its delicious taste and its various functional ingredients (organic acids, phenolics, minerals and vitamins) with multitherapeutic value (antioxidant, anti-inflammatory, anticancer, neuroprotective and vision improvement properties). However, fresh blueberries are highly perishable since they are vulnerable to mechanical damage and microbial decay, resulting in a short shelf life and inevitable subsequent economic losses. Due to the strong seasonal availability and limited storage period of blueberries, their derived bioactive products have emerged as functional foods. Novel food developments that are currently available include blueberry fruit juice, wine, vinegar, jam, dried fruit, pulp powder, colorant and flavoring additives used in cake, biscuit, bread, yogurt, and jelly. This review systematically describes the current status of blueberry fruit as bioactive ingredients and valuable food products with greater nutraceutical health potential of blueberries.


Subject(s)
Blueberry Plants , Acetic Acid , Antioxidants , Fruit , Humans , Powders , Vitamins
3.
Chemosphere ; 304: 135334, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35709835

ABSTRACT

Cover crop is an effective practice for improving soil quality and increase soil nutrients. However, the spatio-temporal change of soil phosphorus (P) components and P-solubilizing microorganisms in the process of grass succession is not evident. Here, we studied the variation of soil P components and P-solubilizing bacteria at 0-60 cm soil layer under clean tillage (CT) and white clover (WC, Trifolium repens L.) grown for 5, 9, and 14 years in an apple test station on the Loess Plateau, China. This study suggested that clover cover could effectively increase the total P, available P (AP), microbial P, organic P (Po), and inorganic P (Al-P, Ca2-P, Ca8-P and Fe-P) in topsoil (0-20 cm) and AP, Po and inorganic P at 20-40 cm soil layer to improve the soil P bioavailability. The effects of WC living mulch on the soil P forms were more significant with the increase in grass growing years, but this effect was difficult to extend to deep soil. In addition, the WC treatments were beneficial to the growth of P-solubilizing microorganisms in surface soil and improved the alkaline phosphatase activity at 0-40 cm soil layer, mainly including Bacillus, Bradyrhizobium, Nocardioides, Sphingomonas and Streptomyces. This study provided a perspective on the dynamic changes of soil P forms and P-solubilizing microorganisms and under long-term cover crop.


Subject(s)
Malus , Trifolium , Agriculture , Bacteria , China , Medicago , Poaceae , Soil
4.
Environ Res ; 209: 112884, 2022 06.
Article in English | MEDLINE | ID: mdl-35131319

ABSTRACT

The vitality and diversity of soil microbial metabolism are the core of soil function expression, cover crop is an environmentally friendly agricultural production practice; however, shifts in soil microbial metabolic activities along time gradient of cover crop remain unclear. Here, we used metagenomic and biological techniques to investigate soil microbial potential function and carbon (C) source utilization capacity in the time series of white clover (WC, Trifolium repens L.) for 6, 10, and 15 years in a typical semiarid apple orchard. Conventional tillage (CT) was taken as the control. This study demonstrated that living mulch 6 years of WC had little effect on soil microbial functions. However, after 10 and 15 years of crop cover, an enrichment of genes related to amino acid metabolism, carbon cycle, and nitrogen metabolism was observed in soil microorganisms. Furthermore, average well color development (AWCD) was increased in 10 and 15 years of cover crop, soil microbiome exhibited a stronger preference for carbohydrates, amino acids, and polymers as C sources. The results mainly provided insight into the variation character of microbial metabolic function under increasing duration of cover crop.


Subject(s)
Soil Microbiology , Soil , Agriculture/methods , Biodegradation, Environmental , Carbon , Soil/chemistry
5.
Bioresour Technol ; 346: 126647, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34974101

ABSTRACT

Aimed to evaluate the coexistence of bacterial and fungal diversity and their correlation with enzymatic activity in response to biochar. This study performed aerobic composting based on typical agricultural wastes of sheep manure with additive apple tree branch biochar at distinct concentration (0, 2.5, 5, 7.5, 10 and 12.5% corresponding from T1 to T6). The result demonstrated that appropriate amendment of biochar enriched bacterial diversity (1646-1686 OTUs) but interestingly decreased fungal diversity (542-630 OTUs) compared to control (1444 and 682 OTUs). Biochar addition enhanced all enzymatic activities and its correlation with bacterial was more complex than fungal community (786 and 359 connect edges). The dominant microbes comprised of Firmicutes (45.2-35.2%), Proteobacteria (14.0-17.5%), Basidiomycota (32.4-49.5%) and Ascomycota (11.3-37.5%) among all the treatments. Overall, biochar regulates the composting microenvironment by influencing the microbial diversity and associated enzymatic activities.


Subject(s)
Composting , Animals , Charcoal , Manure , Sheep , Soil
6.
Article in English | MEDLINE | ID: mdl-35082508

ABSTRACT

BACKGROUND: Diabetes has become popular and has become one of the most important global health care challenges. Patients with diabetes have a high incidence of skin diseases. Cell and animal models are often used to study the skin conditions of people with diabetes. METHODS: In this study, a volunteer questionnaire survey, skin lipomics analysis based on ultra-high performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry (UPLC-QTOF-MS), and weighted gene co-expression network analysis (WGCNA) were used to study the differences in skin conditions and skin lipids of participants with type 2 diabetes mellitus (Group D) versus healthy individuals (Group H) and the correlation between these groups. The questionnaire was used to investigate personal basic, diabetes, and facial skin status information of 77 female volunteers aged 55-65 years old from the Peking University Shougang Hospital. The facial skin lipids of all volunteers were analysed by UPLC-QTOF-MS technique; the differential lipids between groups D and H were analysed by partial least-squared discriminant and univariate analysis. RESULTS: In total, 23 kinds of differential lipids were identified, all of which belonged to sphingolipids. The use of WGCNA combined clinical information with lipid analysis to study the relationship between glycosylated haemoglobin, skin pigmentation/non-pigmentation, and skin lipids. Two types of lipids were identified to distinguish between hub lipids of high and low glycosylated haemoglobin; 12 types of lipids were identified that could distinguish between the hub lipids of pigmented and non-pigmented participants (PLS-DA). CONCLUSION: The experimental results not only provide a reference for the diagnosis and classification of diabetes via analysing the skin lipids of patients, but also provides a theoretical basis for further study on the effects of diabetes on the skin of patients.

7.
Chemosphere ; 287(Pt 4): 132454, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34610376

ABSTRACT

This study aimed to clarify that long-term leguminous grass mulching (crown vetch (CV) and white clover (WC)) and gramineous grass (orchardgrass (OG)) drive the distribution of soil aggregates and are associated with dissolved organic matter (DOM) components. Excitation emission spectroscopy and parallel factor analysis (EEM-PARAFAC) were used to evaluate the influence of different grass mulches among aggregates. The results indicated that legumes had a more significant impact on the distribution of aggregates and DOM content than gramineae grass mulching. Leguminous grass mulching significantly increased the proportion of macroaggregates >250 µm (74.65%-83.50%) and aggregates associated with dissolved organic carbon (DOC), especially in microaggregates <250 µm (172.27 mg kg-1 to 391.55 mg kg-1). In addition, leguminous grass mulching (CV and WC) contributed more to the increase in soil total nitrogen (TN) and three identified fluorescent components (UVC humic-like, UVA humic-like and protein-like). The component of UVC humic-like relative abundance decreased (48.66%-36.57%), and the protein-like component increased (21.88%-36.50%) as the aggregate size decreased, but the DOM three compositions did not change. The DOM of macroaggregates had higher aromaticity and lower molecular weight than microaggregates, and the highest abundance of UVC humic-like component (54.52%) was found in the gramineous (OG) large macroaggregates, while the higher abundance of protein-like components (31.07%-36.50%) occurs in leguminous mulching (CV and WC) microaggregates. The results contribute to a further understanding of the dynamic process by which grass mulching mediates aggregate formation and DOM component transformation in semiarid apple orchards under grass waste management.


Subject(s)
Carbon , Humic Substances , Factor Analysis, Statistical , Humic Substances/analysis , Poaceae , Soil , Spectrometry, Fluorescence
8.
Chemosphere ; 287(Pt 4): 132404, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34597634

ABSTRACT

The grass-waste management model affects soil organic carbon (SOC) and the microorganism community structure; however, studies on the relationship between the fungal community structure and the SOC chemical component at the aggregate level are poor. Solid-state 13C NMR and 18 S rDNA methods were used to evaluate the relationship between the SOC chemical composition and fungal community abundance at the aggregate level. Grass mulching significantly increased the percentage of labile carbon O-alkyl C (5.19%-11.79%) and decreased the instability of SOC (1.38-0.69). Microaggregates contained higher alkyl C (33.77%) and lower aromatic C (18.31%), and the A/O-A ratio (1.03) was higher than that of macroaggregates (0.89-0.96). Ascomycota, Basidiomycota and Mortierellomycota dominated the fungal community at the phylum level, and their abundance increased after grass mulching. Microaggregates supported more microbial diversity and richness and were rich in the Ascomycota (36.69%-67.49%) phylum, while LM aggregates were rich in Basidiomycota (5.62%-39.84%). We proved that changes in the O-alkyl C, carbonyl C, aromatic C and alkyl C of SOC chemical components were closely connected to fungal community composition, which together explained the change in fungal composition by 63.81%-71.99% among aggregates. We concluded that alterations in the chemical form of organic carbon were closely related to a change in the soil fungal community. This connection has a positive impact on soil nutrient utilization and SOC conversion in fruit-grass composite ecosystems and promotes the understanding of the relationship between the soil microbial community and nutrient cycling during long-term grass waste utilization.


Subject(s)
Malus , Microbiota , Mycobiome , Carbon/analysis , China , Poaceae , Soil , Soil Microbiology
9.
Chemosphere ; 286(Pt 2): 131693, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34358886

ABSTRACT

Based on the sustainable development practice-zero growth in chemical fertilizer application, this article used bagasse organic fertilizer and rice husk derived biochar to investigate the response of soil bacterial community in apple orchard. Aimed at realize the soil quality improvement and biomass resource recovery to contribute agricultural and environmental sustainability. The co-trophic Proteobacteria was predominant in all the treatments (29-36 %) and enriched in non-nitrifying Alphaproteobacteria (9-11 %) and ammonia oxidant Betaproteobacteria (8-10 %), especially richest in bagasse fertilizer combine biochar treated soil. In addition, bacterial community variation was assessed by alpha and beta diversity, four treatments dispersed distribution and richer abundance observed in combined apply bagasse fertilizer and biochar treatment (3909.22 observed-species) than single application (3729.88 and 3646.58 observed-species). Biochar as microbial carrier combined organic fertilizer were established synergistic interaction and favorable to organic matter availability during sustainable agriculture. Finally, integrated biochar-bagasse fertilizer was richer than single organic or biochar fertilization in improving soil bacterial diversity, notably by promoting the metabolism of copiotrophic bacteria, nutrient cycling, plant growth and disease inhibit-related bacteria.


Subject(s)
Fertilizers , Malus , Agriculture , Bacteria/genetics , Cellulose , Charcoal , Fertilizers/analysis , Soil , Soil Microbiology
10.
J Hazard Mater ; 420: 126635, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34329093

ABSTRACT

Present study was focus on the pollution control aspect of gaseous mitigation and heavy metal passivation as well as their associated bacterial communities driven by apple tree branch biochar (BB) during sheep manure composting. Six treatment was performed with distinct concentration of BB from 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% as T1 to T6. Compared with compost without additive, biochar-based composting recorded faster thermophilic process (4thd) and longer duration (12-14d), lower gaseous emission in terms of ammonia (5.37-10.29 g), nitrous oxide (0.12-0.47 g) and methane (4.38-30.29 g). Notably highest temperature (65.3 â„ƒ) and active thermophilic duration (14d), minimized gaseous volatilization were detected in 10%BB composting. Aspect of non-degradability and enrichment-concentration properties of heavy metals, the total copper (Cu) and zinc (Zn) were increased (from initial 12.71-17.91 to final 16.36-29.36 mg/kg and 107.39-146.58-161.48-211.91 mg/kg). In view of available diethylene triamine pentacetic acid (DTPA) extractable form, DTPA-Cu and DTPA-Zn from 4.29 to 6.57 and 31.66-39.32 mg/kg decreased to 3.75-4.82 and 23.43-40.54 mg/kg, especially the maximized passivation rate of 46.95% and 56.27% were present in 10%BB composting. Additionally, bacterial diversity of biochar-based composting was increased (1817-2310 OTUs) than control (1686 OTUs) and dominant by Firmicutes (52.75%), Bacteroidetes (28.41%) and Actinobacteriota (13.98%). Validated 10% biochar-based composting is the optimal option for effectively control environmental pollution to obtain hygienic composting.


Subject(s)
Composting , Metals, Heavy , Animals , Charcoal , Environmental Pollution , Gases , Manure , Metals, Heavy/analysis , Sheep , Soil
11.
Chemosphere ; 274: 129914, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33979918

ABSTRACT

Present study evaluated the utilization of clean technology for biochar combined with organic fertilizer in apple orchard aspect of soil organic carbon fractions and microbial community. Four treatments were performed with control (CK), rice husk biochar alone (B), bagasse fermented organic fertilizer alone (O) and biochar combined with organic fertilizer (BO). The results demonstrated that utilization of organic fertilizer integrated with biochar were obviously enhanced the total and active fractions organic carbon in the top-soil (0-20 cm), enriched the bacterial community diversity and the richest abundance presented in BO treatment with 4253 operational taxonomic unit. The visualization illustrated the superior bacterial community was affiliated with Proteobacteria (35.14%), Actinobacteria (21.34%), Acidobacteria (16.82%) and Firmicutes (14.70%). Additionally, redundancy analysis suggested the strong interaction between microorganisms and organic carbon fractions. Overall, the application of biochar combine with organic fertilizer was favorable approach in apple orchard management, attributed to the influence of essential factors by improve organic carbon and bacterial diversity especially conductive to the profitable strain proliferation.


Subject(s)
Malus , Soil , Carbon , Charcoal , Fertilizers/analysis , Soil Microbiology , Technology
12.
Chemosphere ; 275: 130093, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652274

ABSTRACT

The objective of this present study was to understand the distribution patterns of various forms of soil phosphorus (P) and the biotic and abiotic factors affecting the soil P fractions under long-term cover crops. Here, we investigated the characteristics of soil P forms, community structure of P-solubilizing bacteria (using 16S rRNA) and the related enzyme activity under clean tillage (CT), 14 years of white clover (WC, Trifolium repens L.) and orchard grass (OG, Dactylis glomerata L.) cover crops in a rain-fed apple orchard on the Weibei Loess Plateau, China. Relative to CT treatment, long-term cover crops enhanced the bioavailability of soil P by increasing the contents of total phosphorus (TP), microbial phosphorus (MBP), organic phosphorus (Po) and certain forms of inorganic phosphorus (e.g. Al-P, Ca2-P, Ca8-P and Fe-P) in the surface soil, in addition, WC treatment also increase the available P (AP) contents in the topsoil. A redundant analysis (RDA) showed that soil organic matter (SOM), NH4+-N and pH were the key environmental factors affecting the morphological changes of soil P. In addition, the effects of long-term cover crops on soil P forms were mainly concentrated in the topsoil, and the WC treatment had a greater impact on soil P composition than the OG treatment. Interestingly, long-term cover crops effectively increased the abundances of P-solubilizing bacteria, such as Streptomyces, Sphingomonas, Nocardioides and Haliangium, and enhanced the alkaline phosphatase (ALP) activity. Overall, long-term cover crops were an effective strategy to activate soil P as they improve the soil environment.


Subject(s)
Malus , Soil , China , Phosphorus , RNA, Ribosomal, 16S , Rain , Soil Microbiology
13.
Bioengineered ; 12(1): 476-495, 2021 12.
Article in English | MEDLINE | ID: mdl-33472503

ABSTRACT

Huge quantities of apple orchard waste (AOW) generated could be regarded as a promising alternative energy source for fuel and material production. Conventional and traditional processes for disposal of these wastes are neither economical nor environment friendly. Hence, sustainable technologies are required to be developed to solve this long-term existence and continuous growing problem. In light of these issues, this review pays attention towards sustainable and renewable systems, various value-added products from an economic and environmental perspective. Refined bio-product derived from AOW contributes to resource and energy demand comprising of biomethane, bioethanol, biofuels, bio-fertilizers, biochar, and biochemicals, such as organic acid, and enzymes. However, the market implementation of biological recovery requires reliable process technology integrated with an eco-friendly and economic production chain, classified management.


Subject(s)
Agriculture , Crops, Agricultural/economics , Malus , Recycling , Waste Management , Agriculture/economics , Agriculture/statistics & numerical data , Biofuels , Industrial Waste/economics
14.
J Environ Manage ; 271: 110985, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32579532

ABSTRACT

To improve our understanding about the responses of microbial functional diversity to different mulching practices, this study used a metagenomic approach to reveal soil microbial functional specificity under four tillage regimes: conventional tillage (CT), organic mulch practices with ryegrass (Lolium perenne L.) intercropping cover (RE) and cornstalk mulch (CS), and inorganic mulching with black ground fabric (BF) in a 7-year field experiment in an apple orchard of the Loess Plateau in China. Enzyme activity and soil physicochemical properties were measured. A redundancy analysis showed that the RE and CS treatments had positive effects on soil nutrient and enzyme activity compared to that of the BF and CT treatments. The CS and RE treatments increased ß-glucosidase, cellobiohydrolase, and ß-xylosidase activities. In addition, the CS treatment significantly enhanced the ß-N-acetylglucosaminidase and urease activities compared to that under CT treatment. However, the activity of these enzyme was reduced in the BF treatment compared with that of the CT treatment. The results also indicated that the enzymes activities were not completely consistent with the changing trends of the genes encoding these enzymes. In addition, the RE and CS treatments also increased the abundance of genes encoding carbohydrate enzymes. It is interesting that the RE and CS treatments had more pathway genes associated with the carbon cycle, nitrogen cycle, and amino acid metabolism compared with the BF treatment. Remarkably, RE and CS treatments effectively increased the abundance of carbon fixation gene cbbL compared to CT treatment. In summary, organic mulching practices increased the soil microbiological functional diversity related to the carbon and nitrogen cycle, while inorganic mulching practice reduced them. This study enhanced our understanding of how mulching practices may alter soil microbial functional diversity and benefit soil quality.


Subject(s)
Soil Microbiology , Soil , Agriculture , Carbon , China
15.
Sci Total Environ ; 725: 138527, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32304971

ABSTRACT

The study aimed to investigate how mulching practices can improve soil quality by altering microbial community composition and the interrelations among its members. The experiment was conducted for 7 years (from 2012 to 2018) in an apple (Malus domestica cv. Fuji) orchard located on the Loess Plateau, China. Four treatments were applied: conventional tillage (CT), intercrop ryegrass (Lolium perenne L.) cover (RE), inter-row cornstalk mulch (CS), and black ground fabric mulch (BF). The results indicated that compared to CT treatment, all the three mulching practices significantly increased soil moisture content. The RE and CS treatments improved soil organic matter content by 11.8% and 36.5%, respectively, and CS treatment also increased available nitrogen content in soil by 42.0% compared with CT treatment. The soil environmental heterogeneity under different mulching practices shaped the microbial community structure and the dominant populations. All the mulching practices significantly increased the operational taxonomic unit (OTU) abundance and alpha diversity of fungi, and positively affected bacterial richness. Network analyses showed that the microbial structure was significantly affected by soil water and microbial biomass nitrogen. Interestingly, based on network correlation analysis among microorganisms, the BF treatment reduced competition between bacteria, whereas RE treatment increased their cooperation, however, the CS treatment not only promoted cooperation between fungi, but also increased correlations between fungi and bacteria. Finally, our results indicated that mulching practices not only increased the diversity of microorganisms and abundance of dominant species, but also promoted the interrelations among microorganisms in favor of soil quality.


Subject(s)
Mycobiome , Soil , Agriculture , Bacteria , China , Soil Microbiology
16.
Environ Sci Pollut Res Int ; 27(35): 43452-43465, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32279271

ABSTRACT

The Loess Plateau is the largest apple cultivation region in the world. However, the role of rain-fed apple orchards as carbon sinks or sources, including the dynamic variation and influencing factors, are still unclear. In this study, the net ecosystem CO2 exchange (NEE) was monitored by an eddy covariance (EC) system in Loess Plateau apple orchards during 2016-2017. The results demonstrated that the annual NEE was higher in 2016 (- 698.0 g C m-2 year-1) than in 2017 (- 554.0 g C m-2 year-1). Particularly, the amount of orchard CO2 uptake was significantly greater in 2016 (- 772.0 g C m-2) than in 2017 (- 642.1 g C m-2) during the carbon sink period. This difference may be attributed to the higher NEE in 2016 compared to 2017 during the fast and slow growth periods. In addition, a higher daily NEE occurred to the higher air temperature (Ta), which promoted early sprouting in 2016 (- 3.91 g C m-2 day-1) compared to 2017 (- 2.86 g C m-2 day-1) during the fast growth period. The daily NEE in 2016 (- 2.59 g C m-2 day-1) was remarkably higher than that in 2017 (- 1.41 g C m-2 day-1) during the slow growth period, owing to the greater number of cloudy and rainy days and lower temperatures in 2017. Overall, the present study demonstrated the key role played by the amount of precipitation and temperature in regulating the NEE during the growth season and provided accurate quantitative information on the carbon budget in apple orchards. Graphical abstract.


Subject(s)
Ecosystem , Malus , Carbon Dioxide , Carbon Sequestration , Seasons
17.
Sci Total Environ ; 715: 136983, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32041001

ABSTRACT

Microbial activities are the dynamic core in the soil nutrient cycle. To improve the knowledges about the responses of soil microbial community structure and potential function to long-term cover crops practice. The co-occurrence patterns of soil microbial community structure and functional genes were evaluated using 16SrRNA, ITS and metagenomic technique in 13 years cover crops of orchard grass (OG, Dactylis glomerata L.) with high C/N and white clover (WC, Trifolium repens L.) with low C/N. Conventional tillage (CT) was control. The experiment was implemented in an apple orchard located on the Loess Plateau, China, from 2006 to 2018. We also measured soil physicochemical properties and enzyme activities related to carbon and nitrogen cycling. The conclusions showed that the dominant bacterial phyla were Actinobacteria 27.68% in OG treatment and Proteobacteria 25.89% in WC treatment. Organic matter inputs stimulated growth of the phyla of Actinobacteria, Firmicutes, Chloroflexi, Ascomycota and genera of Bacillus, Blastococcus, Streptomyces and Penicillium. Interestingly, the OG and WC treatments promoted the fungal and bacterial alpha-diversity compared to CT treatment, respectively. In addition, compared to CT treatment, OG treatment was beneficial to the increase of C-cycle enzyme activity, while WC treatment tended to increase the N-cycle enzyme activity. Notably, compared to CT treatment, they both enriched carbon fixation and cycle pathways genes, while WC treatment increased the nitrogen metabolism pathway genes. Moreover, OG treatment was more conducive to the enrichment of carbohydrate enzymes genes involved in the hydrolysis of cellulose and hemicellulose compared to WC treatment. Overall, different quality of plant residues stimulated the specific expressions of soil microbial community structure and function. Long-term planted white clover was effective strategy to improve soil quality.


Subject(s)
Composting , Soil Microbiology , China , Microbiota , Soil
18.
Environ Sci Pollut Res Int ; 27(35): 43439-43451, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32016877

ABSTRACT

The eddy covariance (EC) technique was used to measure variations of orchard-atmosphere CO2 exchange, as a function of meteorological variables in an apple orchard in 2016-2017. The annual average CO2 exchange rate was 2.295 kg m-2. Excavations and biomass assessments demonstrated that the orchard stored close to 20.6 tC ha-1 as plant C over a 15-year period. Seasonally, high rates of CO2 uptake and low CO2 emissions occurred between May and August and December and March, respectively. The maximum rates of monthly CO2 exchange were 144.44 and 153.61 gC m-2 month-1 in August 2016 and June 2017, respectively. Partial least squares (PLS) regressions were used to analyze the influence of meteorological factors to on CO2 exchange rates. Temperature and photosynthetic active radiation (PAR) were observed to exert the largest influence on driving variation in CO2 exchange. The main meteorological factors affecting CO2 exchange on daily and monthly time scales were soil temperature (Tsoil), air temperature (Ta), PAR, below canopy CO2 concentration (BCC), vapor pressure deficit (VPD), and soil water content at 50 cm (SWC50cm). The regression model equation describing CO2 exchange included Ta, VPD, precipitation (PPT), and sunshine duration (SD), as significant variables. This model curve fitting explains over 80% of the variation in CO2 exchange. This study provides CO2 exchange characteristics and a model equation capable of predicting CO2 exchange of an apple orchard. Graphical Abstract.


Subject(s)
Malus , Carbon Dioxide , Ecosystem , Least-Squares Analysis , Meteorological Concepts , Seasons
19.
J Environ Manage ; 250: 109531, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31513995

ABSTRACT

Dissolved organic matter (DOM) is an important parameter that reflects soil fertility and quality. In this study, the effects of intercropping perennial ryegrass and straw mulch on the content, composition and spectral characteristics of soil DOM in orchards in arid and semi-arid areas were investigated by three-dimensional fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). Three treatments were applied in a 6-year-old apple orchard on the Loess Plateau: (1) clean tillage (CT); (2) intercropping perennial ryegrass mulch (RE); (3) intercropping straw mulch (CS). Soil samples (0-10, 10-20, 20-40, 40-60, 60-80, 80-100 cm) were collected from different treatments. The total soil organic carbon (SOC) and dissolved organic carbon (DOC) content were ranked as CS> RE> CT, and decreased with soil depth. In addition, the vertical distribution of DOC with different soil depth was caused by organic matter input but not leaching. Three humic-like components and two protein-like components were identified by EEM-PARAFAC. Fluorescence spectra showed that humic-like compounds were the dominant fractions in soil DOM in the CS treatment. Fluorescence Index (FI) indicated that the proportion of plant residues and soil organic matter derived DOM ranked as CT> RE> CS and gradually decreased with soil depth. Our results highlight the key role of orchard intercropping mulch in improving the content and compositions of soil DOM through different forms of organic inputs and provide new theoretical support for the evaluation of soil fertility in orchards.


Subject(s)
Malus , Soil , Carbon , Humic Substances , Spectrometry, Fluorescence
20.
Bioengineered ; 10(1): 207-217, 2019 12.
Article in English | MEDLINE | ID: mdl-31169443

ABSTRACT

Groundcover management can significantly affect soil microbial metabolic activities, especially carbon metabolism, in apple orchards. However, there have been few studies on the effects of groundcover on the seasonality of soil microbial carbon metabolism. We, therefore, studied soil microbial carbon metabolism in an apple orchard on China's Loess Plateau under four single species cover crops (the grass Dactylis glomerata L., and the legumes Trifolium repens, Coronilla varia L., Lotus corniculatus L.) during spring, summer and fall. Cover cropping significantly, but differentially, promoted soil microbial carbon metabolism in spring and fall. However, cover cropping leads to a significant reduction of soil moisture in spring and summer due to the competition of soil moisture between the cover crops and apple trees, which probably lead to the changes in types of carbon substances metabolizing by soil microbes in summer. Besides, cover crop significantly enhanced soil organic carbon contents between three seasons while clean cultivation had slight, non-significant effects. The promotion of soil microbial metabolic activities was probably an important mechanism for the carbon accumulation, and we postulate that leguminous cover plants may have significantly different effects, mediated through their root exudates, from grasses on soil carbon contents.


Subject(s)
Carbon/metabolism , Malus , Soil Microbiology , Seasons , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...