Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(25): e2301071, 2023 09.
Article in English | MEDLINE | ID: mdl-37401167

ABSTRACT

Hypoxia inducible factor-1α (HIF-1α) plays a critical role in cellular adaptation to hypoxia and it is a potential therapeutic target for anti-cancer drugs. Applying high-throughput screening, here it is found that HI-101, a small molecule containing an adamantaniline moiety, effectively reduces HIF-1α protein expression. With the compound as a hit, a probe (HI-102) is developed for target identification by affinity-based protein profiling. The catalytic ß subunit of mitochondrial FO F1 -ATP synthase, ATP5B, is identified as the binding protein of HI-derivatives. Mechanistically, HI-101 promotes the binding of HIF-1α mRNA to ATP5B, thus inhibiting HIF-1α translation and the following transcriptional activity. Further modifications of HI-101 lead to HI-104, a compound with good pharmacokinetic properties, exhibiting antitumor activity in MHCC97-L mice xenograft model, and HI-105, the most potent compound with an IC50 of 26 nm. The findings provide a new strategy for further developing HIF-1α inhibitors by translational inhibition through ATP5B.


Subject(s)
Antineoplastic Agents , Mice , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , RNA, Messenger/genetics , Protein Processing, Post-Translational , High-Throughput Screening Assays , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
2.
ACS Med Chem Lett ; 13(12): 1864-1869, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36518694

ABSTRACT

Hypoxia-inducible factor, also known as HIF, is a transcriptional factor universally found in mammalian cells. HIF-1 is one of the HIF-families and acts as a heterodimer consisting of α and ß subunits. It is found to play significant roles in pathologic conditions such as tumor development and metastasis. Here, we first report benzo[d]isoxazole analogues as HIF-1α transcription inhibitors. Thereby, we designed and synthesized 26 benzo[d]isoxazole derivatives and evaluated their inhibitory activities against HIF-1α transcription in HEK293T cells by a dual-luciferase gene reporter assay. Among them, compounds 15 and 31 showed the best efficacy in a cell-based assay with an IC50 value of 24 nM and have potential antitumor effects for further development.

3.
Cell Chem Biol ; 29(9): 1396-1408.e8, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35905743

ABSTRACT

The mitochondrial caseinolytic protease P (ClpP) is a target candidate for treating leukemia; however, the effects of ClpP modulation on solid tumors have not been adequately explored. Here, we report a potent activator of ClpP with the therapeutic potential for pancreatic ductal adenocarcinoma (PDAC). We first validated that aberrant ClpP activation leads to growth arrest of PDAC cells and tumors. We then performed high-throughput screening and synthetic optimization, from which we identified ZG111, a potent activator of ClpP. ZG111 binds to ClpP and promotes the ClpP-mediated degradation of respiratory chain complexes. This degradation activates the JNK/c-Jun pathway, induces the endoplasmic reticulum stress response, and consequently causes the growth arrest of PDAC cells. ZG111 also produces inhibitory effects on tumor growth in cell line-derived and patient-derived xenograft mouse models. Altogether, our data demonstrate a promising therapeutic strategy for PDAC suppression through the chemical activation of ClpP.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/metabolism , Endopeptidase Clp/metabolism , Homeostasis , Humans , Mice , Pancreatic Neoplasms/metabolism , Peptide Hydrolases/metabolism , Proteome/metabolism , Pancreatic Neoplasms
4.
ACS Chem Biol ; 15(3): 632-639, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32069008

ABSTRACT

Post-translational modifications play vital roles in fine-tuning a myriad of physiological processes, and one of the most important modifications is acetylation. Here, we report a ligand-directed site-selective acetylation using KHAc, a derivative of a phosphoglycerate mutase 1 (PGAM1) inhibitor. KHAc binds to PGAM1 and transfers its acetyl group to the ε-NH2 of Lys100 to inactivate the enzyme. The acetyl transfer process was visualized by time-resolved crystallography, demonstrating that the transfer is driven by proximity effects. KHAc was capable of selectively and effectively acetylating Lys100 of PGAM1 in cultured human cells, accompanied by inhibited F-actin formation. Similar strategies could be used for exogenous control of other lysine post-translational modifications.


Subject(s)
Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemistry , Phosphoglycerate Mutase/chemistry , Acetylation , Actins/metabolism , Binding Sites , Cell Proliferation/drug effects , Crystallization , HEK293 Cells , Humans , Ligands , Mutation , Phosphoglycerate Mutase/antagonists & inhibitors , Protein Binding , Protein Conformation , Protein Processing, Post-Translational
5.
Proc Natl Acad Sci U S A ; 116(46): 23264-23273, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31662475

ABSTRACT

Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) plays a critical role in cancer metabolism by coordinating glycolysis and biosynthesis. A well-validated PGAM1 inhibitor, however, has not been reported for treating pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest malignancies worldwide. By uncovering the elevated PGAM1 expressions were statistically related to worse prognosis of PDAC in a cohort of 50 patients, we developed a series of allosteric PGAM1 inhibitors by structure-guided optimization. The compound KH3 significantly suppressed proliferation of various PDAC cells by down-regulating the levels of glycolysis and mitochondrial respiration in correlation with PGAM1 expression. Similar to PGAM1 depletion, KH3 dramatically hampered the canonic pathways highly involved in cancer metabolism and development. Additionally, we observed the shared expression profiles of several signature pathways at 12 h after treatment in multiple PDAC primary cells of which the matched patient-derived xenograft (PDX) models responded similarly to KH3 in the 2 wk treatment. The better responses to KH3 in PDXs were associated with higher expression of PGAM1 and longer/stronger suppressions of cancer metabolic pathways. Taken together, our findings demonstrate a strategy of targeting cancer metabolism by PGAM1 inhibition in PDAC. Also, this work provided "proof of concept" for the potential application of metabolic treatment in clinical practice.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Phosphoglycerate Mutase/antagonists & inhibitors , Allosteric Regulation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Humans , Mice, Nude , Mice, SCID , Molecular Structure , Molecular Targeted Therapy , Neoplasm Transplantation , Random Allocation , Signal Transduction/drug effects
6.
Molecules ; 24(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818883

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis and biosynthesis to promote cancer cell proliferation, and is believed to be a promising target for cancer therapy. Herein, based on the anthraquinone scaffold, we synthesized 31 anthraquinone derivatives and investigated the structure-activity relationship (SAR). The 3-substitient of sulfonamide on the anthraquinone scaffold was essential for maintaining potency and the modifications of the hydroxyl of alizarin would cause a sharp decrease in potency. In the meantime, we determined the co-crystal structure of PGAM1 and one of the anthraquinone inhibitors 9i with IC50 value of 0.27 µM. The co-crystal structure revealed that F22, K100 and R116 of PGAM1 were critical residues for the binding of inhibitors which further validated the SAR. Consistent with the crystal structure, a competitive assay illustrated that compound 9i was a noncompetitive inhibitor. In addition, compound 9i effectively restrained different lung cancer cells proliferation in vitro. Taken together, this work provides reliable guide for future development of PGAM1 inhibitors and compound 9i may act as a new leading compound for further optimization.


Subject(s)
Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Phosphoglycerate Mutase/antagonists & inhibitors , Sulfonamides/pharmacology , Anthraquinones/chemistry , Antineoplastic Agents/chemistry , Crystallization , Enzyme Inhibitors/chemistry , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry , Tumor Cells, Cultured
7.
Eur J Med Chem ; 168: 45-57, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30798052

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) coordinates glycolysis, pentose phosphate pathway, and serine synthesis to promote tumor growth through the regulation of its substrate 3-phosphoglycerate (3 PG) and product 2-phosphoglycerate (2 PG). Herein, based on our previously reported PGAM1 inhibitor PGMI-004A, we have developed anthraquinone derivatives as novel allosteric PGAM1 inhibitors and the structure-activity relationship (SAR) was investigated. In addition, we determined the co-crystal structure of PGAM1 and the inhibitor 8g, demonstrating that the inhibitor was located at a novel allosteric site. Among the derivatives, compound 8t was selected for further study, with IC50 values of 0.25 and approximately 5 µM in enzymatic and cell-based assays, respectively. Mechanistically, compound 8t reduced the glycolysis and oxygen consumption rate in cancer cells, which led to decreased adenosine 5'-triphosphate (ATP) production and subsequent 5' adenosine monophosphate-activated protein kinase (AMPK) activation. The inhibitor 8t also exhibited good efficacy in delaying tumor growth in H1299 xenograft model without obvious toxicity. Taken together, this proof-of-principle work further validates PGAM1 as a potential target for cancer therapy and provides useful information on anti-tumor drug discovery targeting PGAM1.


Subject(s)
Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phosphoglycerate Mutase/antagonists & inhibitors , Animals , Anthraquinones/chemical synthesis , Anthraquinones/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Phosphoglycerate Mutase/metabolism , Structure-Activity Relationship
8.
Eur J Med Chem ; 163: 864-882, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30580239

ABSTRACT

The sphingomyelin synthase 2 (SMS2) is a potential target for pharmacological intervention in atherosclerosis. However, so far, few selective SMS2 inhibitors and their pharmacological activities were reported. In this study, a class of 2-benzyloxybenzamides were discovered as novel SMS2 inhibitors through scaffold hopping and structural optimization. Among them, Ly93 as one of the most potent inhibitors exhibited IC50 values of 91 nM and 133.9 µM against purified SMS2 and SMS1 respectively. The selectivity ratio of Ly93 was more than 1400-fold for purified SMS2 over SMS1. The in vitro studies indicated that Ly93 not only dose-dependently diminished apoB secretion from Huh7 cells, but also significantly reduced the SMS activity and increased cholesterol efflux from macrophages. Meanwhile, Ly93 inhibited the secretion of LPS-mediated pro-inflammatory cytokine and chemokine in macrophages. The pharmacokinetic profiles of Ly93 performed on C57BL/6J mice demonstrated that Ly93 was orally efficacious. As a potent selective SMS2 inhibitor, Ly93 significantly decreased the plasma SM levels of C57BL/6J mice. Furthermore, Ly93 was capable of dose-dependently attenuating the atherosclerotic lesions in the root and the entire aorta as well as macrophage content in lesions, in apolipoprotein E gene knockout mice treated with Ly93. In conclusion, we discovered a novel selective SMS2 inhibitor Ly93 and demonstrated its anti-atherosclerotic activities in vivo. The preliminary molecular mechanism-of-action studies revealed its function in lipid homeostasis and inflammation process, which indicated that the selective inhibition of SMS2 would be a promising treatment for atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Benzamides/therapeutic use , Drug Discovery , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Animals , Apolipoproteins E/genetics , Benzamides/chemistry , Benzamides/pharmacology , Cell Line , Homeostasis/drug effects , Humans , Inflammation/drug therapy , Lipid Metabolism , Macrophages/metabolism , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...