Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3379, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643180

ABSTRACT

Transition from traditional high-fiber to Western diets in urbanizing communities of Sub-Saharan Africa is associated with increased risk of non-communicable diseases (NCD), exemplified by colorectal cancer (CRC) risk. To investigate how urbanization gives rise to microbial patterns that may be amenable by dietary intervention, we analyzed diet intake, fecal 16 S bacteriome, virome, and metabolome in a cross-sectional study in healthy rural and urban Xhosa people (South Africa). Urban Xhosa individuals had higher intakes of energy (urban: 3,578 ± 455; rural: 2,185 ± 179 kcal/d), fat and animal protein. This was associated with lower fecal bacteriome diversity and a shift from genera favoring degradation of complex carbohydrates (e.g., Prevotella) to taxa previously shown to be associated with bile acid metabolism and CRC. Urban Xhosa individuals had higher fecal levels of deoxycholic acid, shown to be associated with higher CRC risk, but similar short-chain fatty acid concentrations compared with rural individuals. Fecal virome composition was associated with distinct gut bacterial communities across urbanization, characterized by different dominant host bacteria (urban: Bacteriodota; rural: unassigned taxa) and variable correlation with fecal metabolites and dietary nutrients. Food and skin microbiota samples showed compositional differences along the urbanization gradient. Rural-urban dietary transition in South Africa is linked to major changes in the gut microbiome and metabolome. Further studies are needed to prove cause and identify whether restoration of specific components of the traditional diet will arrest the accelerating rise in NCDs in Sub-Saharan Africa.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Southern African People , Humans , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/microbiology , Cross-Sectional Studies , Diet , Diet, Western , Feces/microbiology , Metabolome , South Africa/epidemiology , Urbanization
2.
Sci Rep ; 7(1): 2989, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592827

ABSTRACT

Metabolic phenotypes reflect both the genetic and environmental factors which contribute to the development of varicose veins (VV). This study utilises analytical techniques to provide a comprehensive metabolic picture of VV disease, with the aim of identifying putative cellular pathways of disease pathogenesis. VV (n = 80) and non-VV (n = 35) aqueous and lipid metabolite extracts were analysed using 600 MHz 1H Nuclear Magnetic Resonance spectroscopy and Ultra-Performance Liquid Chromatography Mass Spectrometry. A subset of tissue samples (8 subjects and 8 controls) were analysed for microRNA expression and the data analysed with mirBase (www.mirbase.org). Using Multivariate statistical analysis, Ingenuity pathway analysis software, DIANALAB database and published literature, the association of significant metabolites with relevant cellular pathways were understood. Higher concentrations of glutamate, taurine, myo-inositol, creatine and inosine were present in aqueous extracts and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in lipid extracts in the VV group compared with non-VV group. Out of 7 differentially expressed miRNAs, spearman correlation testing highlighted correlation of hsa-miR-642a-3p, hsa-miR-4459 and hsa-miR-135a-3p expression with inosine in the vein tissue, while miR-216a-5p, conversely, was correlated with phosphatidylcholine and phosphatidylethanolamine. Pathway analysis revealed an association of phosphatidylcholine and sphingomyelin with inflammation and myo-inositol with cellular proliferation.


Subject(s)
Metabolome , Varicose Veins/pathology , Chromatography, High Pressure Liquid , Female , Gene Expression Profiling , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , RNA, Messenger/analysis
3.
Sci Rep ; 5: 16865, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26574055

ABSTRACT

Persistent infection with oncogenic Human Papillomavirus (HPV) is necessary for cervical carcinogenesis. Although evidence suggests that the vaginal microbiome plays a functional role in the persistence or regression of HPV infections, this has yet to be described in women with cervical intra-epithelial neoplasia (CIN). We hypothesised that increasing microbiome diversity is associated with increasing CIN severity. llumina MiSeq sequencing of 16S rRNA gene amplicons was used to characterise the vaginal microbiota of women with low-grade squamous intra-epithelial lesions (LSIL; n = 52), high-grade (HSIL; n = 92), invasive cervical cancer (ICC; n = 5) and healthy controls (n = 20). Hierarchical clustering analysis revealed an increased prevalence of microbiomes characterised by high-diversity and low levels of Lactobacillus spp. (community state type-CST IV) with increasing disease severity, irrespective of HPV status (Normal = 2/20,10%; LSIL = 11/52,21%; HSIL = 25/92,27%; ICC = 2/5,40%). Increasing disease severity was associated with decreasing relative abundance of Lactobacillus spp. The vaginal microbiome in HSIL was characterised by higher levels of Sneathia sanguinegens (P < 0.01), Anaerococcus tetradius (P < 0.05) and Peptostreptococcus anaerobius (P < 0.05) and lower levels of Lactobacillus jensenii (P < 0.01) compared to LSIL. Our results suggest advancing CIN disease severity is associated with increasing vaginal microbiota diversity and may be involved in regulating viral persistence and disease progression.


Subject(s)
Biodiversity , Microbiota , Uterine Cervical Dysplasia/microbiology , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/microbiology , Uterine Cervical Neoplasms/pathology , Vagina/microbiology , Adult , Biomarkers/metabolism , Cohort Studies , DNA, Viral/genetics , DNA, Viral/metabolism , Disease Progression , Female , Genotype , Humans , Lactobacillus/genetics , Lactobacillus/isolation & purification , Middle Aged , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Peptostreptococcus/genetics , Peptostreptococcus/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Severity of Illness Index , Uterine Cervical Neoplasms/virology , Vagina/virology , Young Adult , Uterine Cervical Dysplasia/virology
4.
Sci Rep ; 5: 12955, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26264409

ABSTRACT

Faecal microbiota transplantation (FMT) is effective in the treatment of Clostridium difficile infection, where efficacy correlates with changes in microbiota diversity and composition. The effects of FMT on recipient microbiota in inflammatory bowel diseases (IBD) remain unclear. We assessed the effects of FMT on microbiota composition and function, mucosal immune response, and clinical outcome in patients with chronic pouchitis. Eight patients with chronic pouchitis (current PDAI ≥7) were treated with FMT via nasogastric administration. Clinical activity was assessed before and four weeks following FMT. Faecal coliform antibiotic sensitivities were analysed, and changes in pouch faecal and mucosal microbiota assessed by 16S rRNA gene pyrosequencing and (1)H NMR spectroscopy. Lamina propria dendritic cell phenotype and cytokine profiles were assessed by flow cytometric analysis and multiplex assay. Following FMT, there were variable shifts in faecal and mucosal microbiota composition and, in some patients, changes in proportional abundance of species suggestive of a "healthier" pouch microbiota. However, there were no significant FMT-induced metabolic or immunological changes, or beneficial clinical response. Given the lack of clinical response following FMT via a single nasogastric administration our results suggest that FMT/bacteriotherapy for pouchitis patients requires further optimisation.


Subject(s)
Fecal Microbiota Transplantation , Pouchitis/therapy , Adult , Chronic Disease , Female , Humans , Immunity, Innate , Male , Metabolomics , Middle Aged , Pouchitis/immunology , Pouchitis/metabolism , Pouchitis/microbiology , Proton Magnetic Resonance Spectroscopy
5.
Int J Obes (Lond) ; 39(7): 1126-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25783038

ABSTRACT

BACKGROUND/OBJECTIVES: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. SUBJECTS/METHODS: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. RESULTS: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. CONCLUSIONS: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.


Subject(s)
Anastomosis, Roux-en-Y/methods , Gastrointestinal Hormones/metabolism , MicroRNAs/metabolism , Neuropeptides/metabolism , Obesity/metabolism , Animals , Blood Glucose , Disease Models, Animal , Energy Metabolism , Male , Phenotype , Rats , Rats, Sprague-Dawley , Signal Transduction , Weight Loss
6.
Eur J Clin Nutr ; 69(3): 373-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25205320

ABSTRACT

BACKGROUND: This pilot study investigates the efficacy of a probiotic consortium (Lab4) in combination with vitamin C on the prevention of respiratory tract infections in children attending preschool facilities. SUBJECTS/METHODS: In a double-blind, randomised, placebo-controlled pilot study with children aged 3-6 years, 57 received 1.25 × 10(10) colony-forming units of Lactobacillus acidophilus CUL21 (NCIMB 30156), Lactobacillus acidophilus CUL60 (NCIMB 30157), Bifidobacterium bifidum CUL20 (NCIMB 30153) and Bifidobacterium animalis subsp. lactis CUL34 (NCIMB 30172) plus 50 mg vitamin C or a placebo daily for 6 months. RESULTS: Significant reductions in the incidence rate of upper respiratory tract infection (URTI; 33%, P=0.002), the number of days with URTI symptoms (mean difference: -21.0, 95% confidence interval (CI):-35.9, -6.0, P=0.006) and the incidence rate of absence from preschool (30%, P=0.007) were observed in the active group compared with the placebo. The number of days of use of antibiotics, painkillers, cough medicine or nasal sprays was lower in the active group and reached significance for use of cough medicine (mean difference: -6.6, 95% CI: -12.9, -0.3, P=0.040). No significant differences were observed in the incidence rate ratio or duration of lower respiratory tract infection or in the levels of plasma cytokines, salivary immunoglobulin A or urinary metabolites. CONCLUSIONS: Supplementation with a probiotic/vitamin C combination may be beneficial in the prevention and management of URTIs.


Subject(s)
Ascorbic Acid/therapeutic use , Bifidobacterium , Lactobacillus acidophilus , Probiotics/therapeutic use , Respiratory Tract Infections/prevention & control , Vitamins/therapeutic use , Absenteeism , Antitussive Agents/therapeutic use , Child, Preschool , Cough/drug therapy , Cough/etiology , Double-Blind Method , Female , Humans , Incidence , Male , Pilot Projects , Respiratory Tract Infections/complications , Schools
7.
Nat Commun ; 4: 2699, 2013.
Article in English | MEDLINE | ID: mdl-24158163

ABSTRACT

Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 µm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction.

8.
Obes Rev ; 12(5): e257-72, 2011 May.
Article in English | MEDLINE | ID: mdl-20880129

ABSTRACT

The global prevalence of type 2 diabetes mellitus and impaired glucose metabolism continues to rise in conjunction with the pandemic of obesity. The metabolic Roux-en-Y gastric bypass operation offers the successful resolution of diabetes in addition to sustained weight loss and excellent long-term outcomes in morbidly obese individuals. The procedure consists of the physiological BRAVE effects: (i) Bile flow alteration; (ii) Reduction of gastric size; (iii) Anatomical gut rearrangement and altered flow of nutrients; (iv) Vagal manipulation and (v) Enteric gut hormone modulation. This operation provides anti-diabetic effects through decreasing insulin resistance and increasing the efficiency of insulin secretion. These metabolic outcomes are achieved through weight-independent and weight-dependent mechanisms. These include the foregut, midgut and hindgut mechanisms, decreased inflammation, fat, adipokine and bile metabolism, metabolic modulation, shifts in gut microbial composition and intestinal gluconeogenesis. In a small minority of patients, gastric bypass results in hyperinsulinaemic hypoglycaemia that may lead to nesidioblastosis (pancreatic beta-cell hypertrophy with islet hyperplasia). Elucidating the precise metabolic mechanisms of diabetes resolution and hyperinsulinaemia after surgery can lead to improved operations and disease-specific procedures including 'diabetes surgery'. It can also improve our understanding of diabetes pathogenesis that may provide novel strategies for the management of metabolic syndrome and impaired glucose metabolism.


Subject(s)
Gastric Bypass , Metabolic Syndrome/surgery , Obesity, Morbid/metabolism , Obesity, Morbid/surgery , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Humans , Hyperinsulinism/metabolism , Hyperinsulinism/surgery , Insulin/blood , Insulin/metabolism , Metabolic Syndrome/metabolism
9.
Anal Chem ; 82(1): 203-10, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19961175

ABSTRACT

We demonstrate the statistical integration of nuclear magnetic resonance (NMR) spectroscopy and capillary electrophoresis (CE) data in order to describe a pathological state caused by Schistosoma mansoni infection in a mouse model based on urinary metabolite profiles. Urine samples from mice 53 days post infection with S. mansoni and matched controls were analyzed via NMR spectroscopy and CE. The two sets of metabolic profiles were first processed and analyzed independently and were subsequently integrated using statistical correlation methods in order to facilitate cross assignment of metabolites. Using this approach, metabolites such as 3-ureidopropionate, p-cresol glucuronide, phenylacetylglycine, indoxyl sulfate, isocitrate, and trimethylamine were identified as differentiating between infected and control animals. These correlation analyses facilitated structural elucidation using the identification power of one technique to enhance and validate the other, but also highlighted the enhanced ability to detect functional correlations between metabolites, thereby providing potential for achieving deeper mechanistic insight into the biological process.


Subject(s)
Biomarkers/urine , Electrophoresis, Capillary , Nuclear Magnetic Resonance, Biomolecular , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/diagnosis , Animals , Female , Mice , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/urine , Urine/chemistry
10.
Ultramicroscopy ; 109(8): 952-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19409706

ABSTRACT

Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V(b)) to the device and taking the V(b)-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...