Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(2): 1448-60, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25671413

ABSTRACT

Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (∼50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (∼500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans-SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy.


Subject(s)
Adhesins, Bacterial/metabolism , Mechanical Phenomena , Streptococcus mutans , Agglutinins/metabolism , Animals , Collagen/metabolism , Fibronectins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Protein Binding , Substrate Specificity
2.
Nanoscale ; 6(2): 1134-43, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24296882

ABSTRACT

Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).


Subject(s)
Fimbriae, Bacterial/physiology , Bacterial Adhesion , Caco-2 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lacticaseibacillus rhamnosus/physiology , Microscopy, Atomic Force , Mucins/chemistry , Mucins/metabolism , Nanomedicine , Surface Properties
3.
Langmuir ; 27(4): 1308-13, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21090659

ABSTRACT

Investigating the structural and mechanical properties of lipid bilayer membrane systems is vital in elucidating their biological function. One route to directly correlate the morphology of phase-segregated membranes with their indentation and rupture mechanics is the collection of atomic force microscopy (AFM) force maps. These force maps, while containing rich mechanical information, require lengthy processing time due to the large number of force curves needed to attain a high spatial resolution. A force curve analysis toolset was created to perform data extraction, calculation and reporting specifically in studying lipid membrane morphology and mechanical stability. The procedure was automated to allow for high-throughput processing of force maps with greatly reduced processing time. The resulting program was successfully used in systematically analyzing a number of supported lipid membrane systems in the investigation of their structure and nanomechanics.


Subject(s)
Lipid Bilayers/chemistry , Microscopy, Atomic Force/methods
4.
Biophys J ; 99(2): 507-16, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20643069

ABSTRACT

Cholesterol is involved in endocytosis, exocytosis, and the assembly of sphingolipid/cholesterol-enriched domains, as has been demonstrated in both model membranes and living cells. In this work, we explored the influence of different cholesterol levels (5-40 mol%) on the morphology and nanomechanical stability of phase-segregated lipid bilayers consisting of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/SM/Chol) by means of atomic force microscopy (AFM) imaging and force mapping. Breakthrough forces were consistently higher in the SM/Chol-enriched liquid-ordered domains (Lo) than in the DOPC-enriched fluid-disordered phase (Ld) at a series of loading rates. We also report the activation energies (DeltaEa) for the formation of an AFM-tip-induced fracture, calculated by a model for the rupture of molecular thin films. The obtained DeltaEa values agree remarkably well with reported values for fusion-related processes using other techniques. Furthermore, we observed that within the Chol range studied, the lateral organization of bilayers can be categorized into three distinct groups. The results are rationalized by fracture nanomechanics of a ternary phospholipid/sphingolipid/cholesterol mixture using correlated AFM-based imaging and force mapping, which demonstrates the influence of a wide range of cholesterol content on the morphology and nanomechanical stability of model bilayers. This provides fundamental insights into the role of cholesterol in the formation and stability of sphingolipid/cholesterol-enriched domains, as well as in membrane fusion.


Subject(s)
Cholesterol/pharmacology , Lipid Bilayers/metabolism , Nanostructures/chemistry , Phase Transition/drug effects , Animals , Biomechanical Phenomena/drug effects , Microscopy, Atomic Force , Phosphatidylcholines/chemistry , Sheep , Sphingomyelins/chemistry , Thermodynamics
5.
Langmuir ; 26(13): 11060-70, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20387821

ABSTRACT

Planar supported lipid bilayers (SLBs) are often studied as model cell membranes because they are accessible to a variety of surface-analytic techniques. Specifically, recent studies of lipid phase coexistence in model systems suggest that membrane lateral organization is important to a range of cellular functions and diseases. We report the formation of phase-segregated dioleoylphosphatidylcholine (DOPC)/sphingomyelin/cholesterol bilayers on mercaptoundecanoic-acid-modified (111) gold by spontaneous fusion of unilamellar vesicles, without the use of charged or chemically modified headgroups. The liquid-ordered (l(o)) and liquid-disordered (l(d)) domains are observed by atomic force microscopy (AFM) height and phase imaging. Furthermore, the mechanical properties of the bilayer were characterized by force-indentation maps. Fits of force indentation to Sneddon mechanics yields average apparent Young's moduli of the l(o) and l(d) phases of 100 +/- 2 and 59.8 +/- 0.9 MPa, respectively. The results were compared to the same lipid membrane system formed on mica with good agreement, though modulus values on mica appeared higher. Semiquantitative comparisons suggest that the mechanical properties of the l(o) phase are dominated by intermolecular van der Waals forces, while those of the fluid l(d) phase, with relatively weak van der Waals forces, are influenced appreciably by differences in surface charge density between the two substrates, which manifests as a difference in apparent Poisson ratios.


Subject(s)
Cholesterol/chemistry , Fatty Acids/chemistry , Gold/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Sulfhydryl Compounds/chemistry , Unilamellar Liposomes/chemistry , Models, Theoretical
6.
Langmuir ; 25(22): 12874-7, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19835362

ABSTRACT

The quantification of the mechanical stability of lipid bilayers is important in establishing composition-structure-property relations and sheds light on our understanding of the functions of biological membranes. Here, we designed an experiment to directly probe and quantify the nanomechanical stability and rigidity of the ceramide-enriched platforms that play a distinctive role in a variety of cellular processes. Our force mapping results have demonstrated that the ceramide-enriched domains require both methyl beta-cyclodextrin (MbCD) and chloroform treatments to weaken their highly ordered organization, suggesting a lipid packing that is different from that in typical gel states. Our results also show the expulsion of cholesterol from the sphingolipid/cholesterol-enriched domains as a result of ceramide incorporation. This work provides quantitative information on the nanomechanical stability and rigidity of coexisting phase-segregated lipid bilayers with the presence of ceramide-enriched platforms, indicating that that generation of ceramide in cells drastically alters the structural organization and the mechanical property of biological membranes.

7.
Langmuir ; 25(13): 7471-7, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19292499

ABSTRACT

Exploring the fine structures and physicochemical properties of physiologically relevant membranes is crucial to understanding biological membrane functions including membrane mechanical stability. We report a direct correlation of the self-organized structures exhibited in phase-segregated supported lipid bilayers consisting of dioleoylphosphatidylcholine/egg sphingomyelin/cholesterol (DEC) in the absence and presence of ceramide (DEC-Ceramide) with their nanomechanical properties using AFM imaging and high-resolution force mapping. Direct incorporation of ceramide into phase-segregated supported lipid bilayers formed ceramide-enriched domains, where the height topography was found to be imaging setpoint dependent. In contrast, liquid ordered domains in both DEC and DEC-Ceramide presented similar heights regardless of AFM imaging settings. Owing to its capability for simultaneous determination of the topology and interaction forces, AFM-based force mapping was used in our study to directly correlate the structures and mechanical responses of different coexisting phases. The intrinsic breakthrough forces, regarded as fingerprints of bilayer stability, along with elastic moduli, adhesion forces, and indentation of the different phases in the bilayers were systematically determined on the nanometer scale, and the results were presented as two-dimensional visual maps using a self-developed code for force curves batch analysis. The mechanical stability and compactness were increased in both liquid ordered domains and fluid disordered phases of DEC-Ceramide, attributed to the influence of ceramide in the organization of the bilayer, as well as to the displacement of cholesterol as a result of the generation of ceramide-enriched domains. The use of AFM force mapping in studying phase segregation of multicomponent lipid membrane systems is a valuable complement to other biophysical techniques such as imaging and spectroscopy, as it provides unprecedented insight into lipid membrane mechanical properties and functions.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nanotechnology , Biomechanical Phenomena , Ceramides/chemistry , Cholesterol/chemistry , Microscopy, Atomic Force
8.
Langmuir ; 24(6): 2288-93, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18278960

ABSTRACT

The electrical conduction of metal-molecule-metal junctions formed between Au-supported self-assembled monolayers of structurally different 1-hexanethiol, 1-decanethiol, and ferrocenyl-1-undecanethiol and a Pt-coated atomic force microscope (AFM) tip has been measured under different compression forces using conducting-probe AFM. The observed junction resistance had two distinct power law scaling changes with the compression force. Different scaling regions were assigned to the change in the contact area, tunneling distance, number of conduction pathways, and structure of the film under compression.

SELECTION OF CITATIONS
SEARCH DETAIL
...