Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Int J Med Inform ; 189: 105505, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824858

ABSTRACT

INTRODUCTION: Accurate evaluation of exacerbation frequency is an essential part of COPD assessment. But relying on just the prior-year exacerbation history may not capture the full picture of risk given the inherent year-to-year fluctuations in exacerbation rates. This study aimed to evaluate the predictive performance of models incorporating the 3-year exacerbation history based on electronic medical record. MATERIALS AND METHODS: This retrospective cohort study included 86,501 COPD hospitalized patients in Beijing from 2008 to 2014. The annual frequency of COPD exacerbation hospitalizations over a 3-year period after the index hospitalization was calculated, with patients segmented into seven distinct exacerbation trajectory groups. Logistic regression was used to evaluate the predictive capability of the 3-year exacerbation history for exacerbation readmission in the fourth year. Predictors included age, sex, comorbidities, and exacerbation hospitalization in previous 1-3 years. Model performance was evaluated using area under the receiver operating characteristic curve (AUC). RESULTS: Of the studied patients, 56.5% were men, and the mean age (SD) was 73.8 (10.3) years. The overall readmission rate for COPD exacerbation was 0.31 per person-year, with only 3.8% of patients persistently readmitted over three consecutive years. The 3-year trajectory of exacerbation frequency was associated with exacerbation risk in the fourth year. Compared to just the prior year, the inclusion of a 3-year exacerbation hospitalization history notably improved prediction accuracy, with AUC elevating from 0.731 (0.724-0.739) to 0.786 (0.779-0.792). CONCLUSION: These results unveil the fluctuating nature of COPD exacerbation hospitalization frequency across years and demonstrate that integrating a more comprehensive 3-year exacerbation history significantly refines the prediction model for future risk, thus providing a more nuanced and actionable insight for clinical care.

2.
JMIR Med Educ ; 10: e52461, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38841983

ABSTRACT

Background: Mobile health (mHealth) is an emerging mobile communication and networking technology for health care systems. The integration of mHealth in medical education is growing extremely rapidly, bringing new changes to the field. However, no study has analyzed the publication and research trends occurring in both mHealth and medical education. Objective: The aim of this study was to summarize the current application and development trends of mHealth in medical education by searching and analyzing published articles related to both mHealth and medical education. Methods: The literature related to mHealth and medical education published from 2003 to 2023 was searched in the Web of Science core database, and 790 articles were screened according to the search strategy. The HistCite Pro 2.0 tool was used to analyze bibliometric indicators. VOSviewer, Pajek64, and SCImago Graphica software were used to visualize research trends and identify hot spots in the field. Results: In the past two decades, the number of published papers on mHealth in medical education has gradually increased, from only 3 papers in 2003 to 130 in 2022; this increase became particularly evident in 2007. The global citation score was determined to be 10,600, with an average of 13.42 citations per article. The local citation score was 96. The United States is the country with the most widespread application of mHealth in medical education, and most of the institutions conducting in-depth research in this field are also located in the United States, closely followed by China and the United Kingdom. Based on current trends, global coauthorship and research exchange will likely continue to expand. Among the research journals publishing in this joint field, journals published by JMIR Publications have an absolute advantage. A total of 105 keywords were identified, which were divided into five categories pointing to different research directions. Conclusions: Under the influence of COVID-19, along with the popularization of smartphones and modern communication technology, the field of combining mHealth and medical education has become a more popular research direction. The concept and application of digital health will be promoted in future developments of medical education.


Subject(s)
Bibliometrics , Education, Medical , Telemedicine , Telemedicine/trends , Humans , Education, Medical/trends , COVID-19
3.
J Phys Chem A ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842399

ABSTRACT

We develop a functional derivative approach to calculate the chemical potentials of second-order perturbation theory (MP2). In the functional derivative approach, the correlation part of the MP2 chemical potential, which is the derivative of the MP2 correlation energy with respect to the occupation number of frontier orbitals, is obtained from the chain rule via the noninteracting Green's function. First, the MP2 correlation energy is expressed in terms of the noninteracting Green's function, and its functional derivative to the noninteracting Green's function is the second-order self-energy. Then, the derivative of the noninteracting Green's function to the occupation number is obtained by including the orbital relaxation effect. We show that the MP2 chemical potentials obtained from the functional derivative approach agree with that obtained from the finite difference approach. The one-electron Hamiltonian, defined as the derivative of the MP2 energy with respect to the one particle density matrix, is also derived using the functional derivative approach, which can be used in the self-consistent calculations of MP2 and double-hybrid density functionals. The developed functional derivative approach is promising for calculating the chemical potentials and the one-electron Hamiltonian of approximate functionals and many-body perturbation approaches dependent explicitly on the noninteracting Green's function.

4.
Nat Commun ; 15(1): 4811, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844452

ABSTRACT

Human multidrug resistance protein 5 (hMRP5) effluxes anticancer and antivirus drugs, driving multidrug resistance. To uncover the mechanism of hMRP5, we determine six distinct cryo-EM structures, revealing an autoinhibitory N-terminal peptide that must dissociate to permit subsequent substrate recruitment. Guided by these molecular insights, we design an inhibitory peptide that could block substrate entry into the transport pathway. We also identify a regulatory motif, comprising a positively charged cluster and hydrophobic patches, within the first nucleotide-binding domain that modulates hMRP5 localization by engaging with membranes. By integrating our structural, biochemical, computational, and cell biological findings, we propose a model for hMRP5 conformational cycling and localization. Overall, this work provides mechanistic understanding of hMRP5 function, while informing future selective hMRP5 inhibitor development. More broadly, this study advances our understanding of the structural dynamics and inhibition of ABC transporters.


Subject(s)
Cryoelectron Microscopy , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Biological Transport , Models, Molecular , HEK293 Cells , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Protein Conformation , Peptides/metabolism , Peptides/chemistry
5.
J Cancer Res Clin Oncol ; 150(5): 260, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760614

ABSTRACT

PURPOSE: Neoadjuvant chemotherapy (NCT) is the standard preoperative treatment for resectable locally advanced esophageal squamous cell carcinoma (ESCC). Some studies reported neoadjuvant immunochemotherapy (NICT) could improve pathological response with manageable safety. However, few studies have compared the efficacy and safety of NICT and NCT, especially survival outcomes. In this study, we compared the efficacy and safety of NICT and NCT after a median follow-up of 36.0 months. METHODS: This was a retrospective study with a 1:1 propensity score matching (PSM). Locally advanced ESCC patients treated with neoadjuvant sintilimab plus chemotherapy or chemotherapy followed by esophagectomy were reviewed. The primary outcome was recurrence-free survival (RFS). RESULTS: Forty-five patients were identified in each group by PSM. The pathological complete response (pCR) rate in NICT and NCT group were 28.9% and 8.9% (P = 0.02). The hazard ratio (HR) was 0.396 (95% CI 0.171-0.919, p = 0.025) for RFS and 0.377 (95% CI 0.145-0.981, p = 0.038) for overall survival (OS), 3-year RFS was 80.6% and 62.1%, 3-year OS was 86.2% and 68.1%. Patients with pCR, MPR or downstaging had better 3-year RFS and 3-year OS. The incidences of postoperative complications and treatment-related adverse events (TRAEs) were similar. CONCLUSION: This trial preliminarily shows that NICT improves pathological and survival outcomes over NCT for resectable locally advanced ESCC, with acceptable and manageable safety.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagectomy , Neoadjuvant Therapy , Humans , Male , Neoadjuvant Therapy/methods , Female , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/drug therapy , Middle Aged , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/drug therapy , Retrospective Studies , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Adult , Immunotherapy/methods , Survival Rate , Treatment Outcome
6.
Adv Healthc Mater ; : e2400946, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736024

ABSTRACT

Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.

7.
Org Lett ; 26(22): 4716-4720, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38802298

ABSTRACT

To realize strong donor-acceptor face-to-face stacking for efficient through-space charge transfer-type thermally activated delayed fluorescence, a conceptually new design strategy is proposed to couple flexible bridges with adequate rigidity via built-in intramolecular hydrogen bonds (IHBs). The resulting emitter ACE-CN has a planarized benzyl methyl ether bridge self-anchored by the C-H···O IHB and shows a high photoluminescence quantum efficiency of 93%. The solution- and vacuum-processed devices exhibited high external quantum efficiencies of 11.8% and 24.7%, respectively.

8.
Genes Genomics ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733520

ABSTRACT

BACKGROUND: The apoptosis-resistant pulmonary arterial endothelial cells (PAECs) are known to be major players in the pulmonary remodeling of pulmonary arterial hypertension (PAH) and exhibit an abnormal metabolic profile with mitochondrial dysfunction. Mitochondrial fission has been shown to regulate the apoptosis of several cell types, but this is largely unexplored in the PAECs. OBJECTIVE: The roles of mitochondrial fission control by Dynamin related protein-1 (DRP1) in the development of PAECs apoptosis suppression were investigated in present study and the potential mechanisms behind this were furtherly explored. METHODS: The mitochondrial morphology was investigated in PAECs from PAH rats with the pulmonary plexiform lesions, and the relations of it with DRP1 expression and apoptosis were furtherly identified in apoptosis-resistant PAECs induced by hypoxia. PAECs were isolated from rats with severe PAH and from normal subjects, the apoptotic-resistant PAECs were induced by hypoxia. DRP1 gene knockdown was achieved via DRP1-siRNA, DRP1 and STAT3 phosphorylation were blocked using its inhibitors, respectively. Apoptosis was analyzed by flow cytometry, and mitochondrial morphology was investigated by transmission electron microscope and confocal microscopy. RESULTS: The PAECs isolated from PAH rats with the pulmonary plexiform-like lesions and displayed lower apoptotic rate with increased DRP1 expression and mitochondrial fragmentation. In addition, similar observations were achieved in apoptosis-resistant PAECs induced by hypoxia. Targeting DRP1 using siRNA and pharmacologic blockade prevented the mitochondrial fission and subsequent apoptotic resistance in PAECs under hypoxia. Mechanistically, STAT3 phosphorylation at Tyr705 was shown to be activated in both PAH and hypoxia-treated PAECs, leading to the regulation of DRP1 expression. Of importance, targeting STAT3Tyr705 phosphorylation prevented DRP1 disruption on apoptosis in PAECs under hypoxia. CONCLUSIONS: These data indicated that STAT3 phosphorylation at Tyr705 impacted DRP1-controlled mitochondrial fission during the development of apoptosis-resistance in PAECs, suggesting mitochondrial dynamics may represent a therapeutic target for PAH.

9.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 284-292, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595246

ABSTRACT

OBJECTIVE: To investigate the correlation factors of complete clinical response in idiopathic inflammatory myopathies (IIMs) patients receiving conventional treatment. METHODS: Patients diagnosed with IIMs hospitalized in Peking University People's Hospital from January 2000 to June 2023 were included. The correlation factors of complete clinical response to conventional treatment were identified by analyzing the clinical characteristics, laboratory features, peripheral blood lymphocytes, immunological indicators, and therapeutic drugs. RESULTS: Among the 635 patients included, 518 patients finished the follow-up, with an average time of 36.8 months. The total complete clinical response rate of IIMs was 50.0% (259/518). The complete clinical response rate of dermatomyositis (DM), anti-synthetase syndrome (ASS) and immune-mediated necrotizing myopathy (IMNM) were 53.5%, 48.9% and 39.0%, respectively. Fever (P=0.002) and rapid progressive interstitial lung disease (RP-ILD) (P=0.014) were observed much more frequently in non-complete clinical response group than in complete clinical response group. The aspartate transaminase (AST), lactate dehydrogenase (LDH), D-dimer, erythrocyte sedimentation rate (ESR), C-reaction protein (CRP) and serum ferritin were significantly higher in non-complete clinical response group as compared with complete clinical response group. As for the treatment, the percentage of glucocorticoid received and intravenous immunoglobin (IVIG) were significantly higher in non-complete clinical response group than in complete clinical response group. Risk factor analysis showed that IMNM subtype (P=0.007), interstitial lung disease (ILD) (P=0.001), eleva-ted AST (P=0.012), elevated serum ferritin (P=0.016) and decreased count of CD4+T cells in peripheral blood (P=0.004) might be the risk factors for IIMs non-complete clinical response. CONCLUSION: The total complete clinical response rate of IIMs is low, especially for IMNM subtype. More effective intervention should be administered to patients with ILD, elevated AST, elevated serum ferritin or decreased count of CD4+T cells at disease onset.


Subject(s)
Autoimmune Diseases , Hyperferritinemia , Lung Diseases, Interstitial , Myositis , Humans , Autoantibodies , Myositis/diagnosis , Pathologic Complete Response , Retrospective Studies
10.
BMJ Open Respir Res ; 11(1)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609180

ABSTRACT

BACKGROUND: Recent studies have suggested elevated blood eosinophils are independent predictors of response to corticosteroid therapy in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Smoking status has been shown to affect corticosteroid response. Whether the association between high blood eosinophils and corticosteroid treatment failure is modified by smoking has not been fully investigated so far. OBJECTIVES: This study aimed to assess whether the association between high blood eosinophils and corticosteroid treatment failure is modified by smoking. METHODS: We included 3402 inpatients with AECOPD treated with corticosteroids at Beijing Chao-Yang Hospital from July 2013 to June 2021. Blood eosinophil counts were measured within 24 hours of admission. An eosinophil percentage ≥2% was considered as high eosinophilic. Smokers in this study were defined as current or former smokers. Treatment failure was defined as a worsening of AECOPD that led to adverse clinical outcomes or required further treatment or an extended hospital stay or hospitalisation following the exacerbation. Multivariate-adjusted logistic models were used to estimate the OR and 95% CI associated with treatment failure. RESULTS: There were 958 (28.2%) treatment failure events occurring. Patients with high eosinophils had a lower risk of treatment failure (OR 0.74, 95% CI 0.63 to 0.87) than patients with low eosinophils. Compared with never smoking and low eosinophilic group, the ORs for treatment failure were 0.70 (95% CI 0.52 to 0.96) for never smoking and high eosinophilic group, 0.82 (95% CI 0.64 to 1.05) for smoking and low eosinophilic group and 0.62 (95% CI 0.47 to 0.81) for smoking and high eosinophilic group. Furthermore, there was no significant interaction between eosinophils and smoking status in relation to treatment failure (p for interaction=0.73). Similar results were obtained from multiple secondary outcomes and subgroup analyses. CONCLUSION: Elevated blood eosinophils are associated with a lower rate of corticosteroid treatment failure, regardless of smoking status. Smoking does not modify the association between blood eosinophil level and corticosteroid treatment failure among inpatients with AECOPD.


Subject(s)
Eosinophils , Pulmonary Disease, Chronic Obstructive , Humans , Inpatients , Smoking/epidemiology , Adrenal Cortex Hormones/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Treatment Failure
11.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629569

ABSTRACT

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Subject(s)
Microplastics , Polyethylene , Plastics , Soil , Chlorides , Halogens , Sulfates , Soil Microbiology
12.
Coron Artery Dis ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38578232

ABSTRACT

Emerging evidence indicates a significant role of remnant cholesterol in contributing to the residual risk associated with major adverse cardiovascular events (MACE). This study aims to evaluate the dose-response relationship between remnant cholesterol and the risk of MACE. PubMed, Embase and Cochrane databases were reviewed to identify cohort studies published in English up to 1 August 2023. Twenty-eight articles were selected. Pooled hazard ratios (HR) and their 95% confidence intervals (CIs) were calculated using fixed or random-effects models to evaluate the association between remnant cholesterol and the risk of MACE. The dose-response relationship between remnant cholesterol levels and the risk of MACE was analyzed using the linear model and restricted cubic spline regression models. For calculated remnant cholesterol levels, the pooled HR (95% CI) of MACE for per 1-SD increase was 1.13 (1.08, 1.17); HR (95% CI) for the second quartile (Q2), the third quartile (Q3) and the highest quartile (Q4) of remnant cholesterol levels were 1.14 (1.03, 1.25), 1.43 (1.23, 1.68) and 1.68 (1.44, 1.97), respectively, compared with the lowest quartile (Q1). For measured remnant cholesterol levels, the pooled HR (95% CI) of MACE per 1-SD increase was 1.67 (1.39, 2.01). The dose-response meta-analysis showed a dose-response relationship between remnant cholesterol levels and the risk of MACE, both on a linear trend (P < 0.0001) and a nonlinear trend (P < 0.0001). The risk of MACE is associated with increased levels of remnant cholesterol, and the dose-response relationship between remnant cholesterol levels and the risk of MACE showed both linear and nonlinear trends.

13.
ACS Appl Mater Interfaces ; 16(17): 22122-22130, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626418

ABSTRACT

The recent discovery of ferroelectricity in pure ZrO2 has drawn much attention, but the information storage and processing performances of ferroelectric ZrO2-based nonvolatile devices remain open for further exploration. Here, a ZrO2 (∼8 nm)-based ferroelectric capacitor using RuO2 oxide electrodes is fabricated, and the ferroelectric orthorhombic phase evolution under electric field cycling is studied. A ferroelectric remnant polarization (2Pr) of >30 µC/cm2, leakage current density of ∼2.79 × 10-8 A/cm2 at 1 MV/cm, and estimated polarization retention of >10 years are achieved. When the ferroelectric capacitor is connected with a transistor, a memory window of ∼0.8 V and eight distinct states can be obtained in such a ferroelectric field-effect transistor (FeFET). Through the conductance manipulation of the FeFET, a high object image recognition accuracy of ∼93.32% is achieved on the basis of the CIFAR-10 dataset in the convolutional neural network (CNN) simulation, which is close to the result of ∼94.20% obtained by floating-point-based CNN software. These results demonstrate the potential of ferroelectric ZrO2 devices for nonvolatile memory and artificial neural network computing.

14.
Sci Total Environ ; 932: 172760, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38670369

ABSTRACT

Owing to stringent vehicle emission regulations and the shifting automotive landscape towards clean-energy vehicles, the emission of non-exhaust tire-wear particles and its implications for microplastic contamination have garnered substantial attention, emerging as a focal point of research interest. Unlike traditional source apportionment methods involving direct environmental sampling, this study focuses on the physical and chemical attributes of tire treads, the tread temperature changes, and the tire-wear particle emissions of three light-duty vehicles manufactured between 2011 and 2021. This study advances the understanding of the effects of tire properties on particle emissions, which provides preliminary information on low-wear tires. The results show that tire-wear particle emissions, mainly composed of ultrafine particles in terms of number, heavily depend on the elevated tread temperatures. The change in tread temperature is influenced not only by the initial tread temperature but also by tread pyrolysis characteristics. Ca, Mg, and Zn are abundantly contained in the tire tread and tire-wear particles.

15.
Biomater Sci ; 12(11): 2865-2884, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38686665

ABSTRACT

Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.


Subject(s)
Cell Membrane , Nanomedicine , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Animals , Membrane Proteins/chemistry , Membrane Proteins/metabolism
16.
Quant Imaging Med Surg ; 14(3): 2225-2239, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545061

ABSTRACT

Background: An accurate assessment of isocitrate dehydrogenase (IDH) status in patients with glioma is crucial for treatment planning and is a key factor in predicting patient outcomes. In this study, we investigated the potential value of whole-tumor histogram metrics derived from synthetic magnetic resonance imaging (MRI) in distinguishing IDH mutation status between astrocytoma and glioblastoma. Methods: In this prospective study, 80 glioma patients were enrolled from September 2019 to June 2022. All patients underwent pre- and post-contrast synthetic MRI scan protocol. Immunohistochemistry (IHC) staining or gene sequencing were used to assess IDH mutation status in tumor tissue samples. Whole-tumor histogram metrics, including T1, T2, proton density (PD), etc., were extracted from the quantitative maps, while radiological features were assessed by synthetic contrast-weighted maps. Basic clinical features of the patients were also evaluated. Differences in clinical, radiological, and histogram metrics between IDH-mutant astrocytoma and IDH-wildtype glioblastoma were analyzed using univariate analyses. Variables with statistical significance in univariate analysis were included in multivariate logistic regression analysis to develop the combined model. Receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic performance of metrics and models. Results: The histopathologic analysis revealed that of the 80 cases, 41 were classified as IDH-mutant astrocytoma and 39 as IDH-wildtype glioblastoma. Compared to IDH-wildtype glioblastoma, IDH-mutant astrocytoma showed significantly lower T1 [10th percentile (10th), mean, and median] and post-contrast PD (10th, 90th percentile, mean, median, and maximum) values as well as higher post-contrast T1 (cT1) (10th, mean, median, and minimum) values (all P<0.05). The combined model (T1-10th + cT1-10th + age) was developed by integrating the independent influencing factors of IDH-mutant astrocytoma using the multivariate logistic regression. The diagnostic performance of this model [AUC =0.872 (0.778-0.936), sensitivity =75.61%, and specificity =89.74%] was superior to the clinicoradiological model, which was constructed using age and enhancement degree (AUC =0.822 (0.870-0.898), P=0.035). Conclusions: The combined model constructed using histogram metrics derived from synthetic MRI could be a valuable preoperative tool to distinguish IDH mutation status between astrocytoma and glioblastoma, and subsequently, could assist in the decision-making process of pretreatment.

17.
Genome Biol Evol ; 16(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38478711

ABSTRACT

It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T. osimensis genome sequence. Zfy1, Zfy2, Kdm5d, Eif2s3y, Usp9y, Uty, and Ddx3y are putatively functional and are now located on the X chromosome, whereas Rbmy, Uba1y, Ssty1, Ssty2, and Sry are missing or pseudogenized. Tissue expressions of the mouse orthologs of the retained genes are significantly broader/higher than those of the lost genes, suggesting that the destinies of the formerly Y-linked genes are related to their original expressions. Interestingly, patterns of gene retention/loss are significantly more similar than by chance across four rodent lineages where Y has been independently lost, indicating a level of certainty in the fate of Y-linked genes even when the chromosome is gone.


Subject(s)
Genes, Y-Linked , Y Chromosome , Humans , Mice , Rats , Animals , Y Chromosome/genetics , Murinae/genetics , X Chromosome/genetics , Genome , Chromosomes, Human, Y , DNA-Binding Proteins/genetics , Transcription Factors/genetics
18.
Arthritis Res Ther ; 26(1): 76, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515127

ABSTRACT

BACKGROUND: Autoimmune responses have been suggested to involvement in patients with Behcet's syndrome (BS). There has been growing attention towards the roles of cutaneous lymphocyte antigen (CLA)+ regular T cells (Tregs) in autoimmune diseases. The role of CLA+ Tregs in BS is still uncertain. This study aims to clarify the impact of CLA+ Tregs on BS. METHODS: We collected peripheral blood from a total of 107 patients with BS and 114 healthy controls (HCs). The number of CLA+ Tregs, natural killer (NK) cells, B cells, and several subtypes of CD4+ T cells were detected using flow cytometry and compared between patients and HCs. RESULTS: The absolute number and proportion of CLA+ Tregs among CD4+ T lymphocytes and CD4+ Tregs were lower in patients with BS than in HCs. CLA+ Tregs were positively related with NK cells (r = 0.500, P < 0.001) and B cells (r = 0.470, P < 0.001) and negatively related with effector T cells (r=-0.402, P < 0.001) in patients with BS. Patients with BS and arterial aneurysms had CLA+ Treg cell deficiency. A decreased proportion of CLA+ Tregs was associated with arterial aneurysms in patients with BS. The proportion of CLA+ Tregs in patients with BS increased with corticosteroids and immunosuppressants. CONCLUSION: CLA+ Tregs decrease in association with arterial aneurysm in patients with BS. CLA+ Tregs may be a predictor of response to BS treatment.


Subject(s)
Aneurysm , Behcet Syndrome , Sialyl Lewis X Antigen/analogs & derivatives , Humans , Clinical Relevance , Oligosaccharides , T-Lymphocytes, Regulatory
19.
IEEE Trans Vis Comput Graph ; 30(5): 2173-2183, 2024 May.
Article in English | MEDLINE | ID: mdl-38437129

ABSTRACT

Category-level pose tracking methods can continuously track the pose of objects without requiring any prior knowledge of the specific shape of the tracked instance. This makes them advantageous in augmented reality and virtual reality applications. The key challenge is how to train neural networks to accurately predict the poses of objects they have never seen before and exhibit strong generalization performance. We propose a novel category-level 6D pose tracking method Corr-Track, which is capable of accurately tracking objects belonging to the same category from depth video streams. Our approach utilizes direct soft correspondence constraints to train a neural network, which estimates bidirectional soft correspondences between sparsely sampled point clouds of objects in two frames. We first introduce a soft correspondence matrix for pose tracking tasks and establish effective constraints through direct spatial point-to-point correspondence representations in the sparse point cloud correspondence matrix. We propose the "point cloud expansion" strategy to address the "point cloud shrinkage" problem resulting from soft correspondences. This strategy ensures that the corresponding point cloud accurately reproduces the shape of the target point cloud, leading to precise pose tracking results. We evaluated our approach on the NOCS-REAL275 and Wild6D dataset and observed superior performance compared to previous methods. Additionally, we conducted cross-category experiments that further demonstrated its generalization capability.

20.
Front Neurol ; 15: 1355546, 2024.
Article in English | MEDLINE | ID: mdl-38497043

ABSTRACT

Objective: To explore the effect of cognitive reserve (CR) on brain volume and cerebrospinal fluid (CSF) in patients with mild cognitive impairment (MCI) and healthy elders (HE). Methods: 31 HE and 50 MCI patients were collected in this study to obtain structural MRI, cognitive function, and composite CR scores. Educational attainment, leisure time, and working activity ratings from two groups were used to generate cognitive reserve index questionnaire (CRIq) scores. The different volumes of brain regions and CSF were obtained using uAI research portal in both groups, which were taken as the regions of interest (ROI), the correlation analysis between ROIs and CRIq scores were conducted. Results: The scores of CRIq, CRIq-leisure time, and CRIq-education in HE group were significantly higher than patients in MCI group, and the montreal cognitive assessment (MoCA) and minimum mental state examination (MMSE) scores were positively correlated with the CRIq, CRIq-education in both groups, and were positively correlated with CRIq-leisure time in MCI group. The scores of auditory verbal learning test (AVLT) and verbal fluency test (VFT) were also positively correlated with CRIq, CRIq-leisure time, and CRIq-education in MCI group, but the score of AVLT was only positively correlated with CRIq in HE group. Moreover, in MCI group, the volume of the right middle cingulate cortex and the right parahippocampal gyrus were negatively correlated with the CRIq, and the volume of CSF, peripheral CSF, and third ventricle were positively correlated with the CRIq-leisure time score. The result of mediation analysis suggested that right parahippocampal gryus mediated the main effect of the relationship between CRIq and MoCA score in MCI group. Conclusion: People with higher CR show better levels of cognitive function, and MCI patients with higher CR showed more severe volume atrophy of the right middle cingulate cortex and the right parahippocampal gyrus, but more CSF at a given level of global cognition.

SELECTION OF CITATIONS
SEARCH DETAIL
...