Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 14(4): 1523-1544, 2024.
Article in English | MEDLINE | ID: mdl-38726263

ABSTRACT

Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.

2.
Transl Cancer Res ; 13(3): 1268-1289, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38617510

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor overall prognosis. Cuproptosis, a recently proposed mode of copper-dependent cell death, plays a critical role in the malignant progression of various tumors; however, the expression and prognostic value of cuproptosis-related regulatory genes in HCC remain unclear. Methods: Genomic, genetic, and expression profiles of ten key cuproptosis-related regulatory genes were analyzed using The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset and protein expression data from the Human Protein Atlas (HPA) database. Unsupervised clustering of HCC patients based on these ten key cuproptosis-related regulatory genes was used to identify different HCC subtypes and analyze the differences in clinical and immune characteristics among subtypes. Subsequently, univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox analyses were used to establish a cuproptosis-related prognostic signature, and the accuracy of prognostic signature prediction was internally validated by Kaplan-Meier survival analysis and time-dependent receiver operating characteristic curve in TCGA training and testing cohorts. The prognostic signature was externally validated using TCGA-LIHC entire cohort and International Cancer Genome Consortium Liver Cancer (ICGC-LIRI) cohorts. Finally, the expression landscape of cuproptosis-related regulatory genes in prognostic signature was explored by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry (IHC) experiments. Results: Ten cuproptosis-related genes were differentially expressed in normal and HCC tissues. Unsupervised clustering identified two subtypes and HCC patients with these two subtypes had different clinical prognoses and immune characteristics, as well as different degrees of response to immunotherapy. Lipoyltransferase 1 (LIPT1), dihydrolipoamide s-acetyltransferase (DLAT), and cyclin dependent kinase inhibitor 2A (CDKN2A) were selected to construct a prognostic signature, which significantly distinguished HCC patients with different survival periods in the TCGA training and testing cohorts and was well validated in both the TCGA-LIHC entire cohort and ICGC-LIRI cohort. The risk score of the prognostic signature was confirmed to be an independent prognostic factor, and nomograms were generated to effectively predict the probability of HCC patient survival. The qRT-PCR, western blotting and IHC results also revealed a significant imbalance in the expression of these cuproptosis-related genes in HCC. Conclusions: The classification and prognostic signature based on cuproptosis-related regulatory genes helps to explain the heterogeneity of HCC, which may contribute to the individualized treatment of patients with the disease.

3.
J Adv Res ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37328057

ABSTRACT

INTRODUCTION: The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES: To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS: FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS: FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS: Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.

4.
ACS Omega ; 8(13): 12339-12347, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033872

ABSTRACT

In this work, mesoporous silica SBA-16-supported NiCo bimetallic nanocatalysts were synthesized by coimpregnation of Ni and Co precursors followed by calcination and reduction, and various characterization techniques confirm the formation of NiCo bimetallic nanostructures in the catalysts. The synthesized NiCo/SBA-16 shows enhanced catalytic performance for hydrogenation of a series of nitroaromatics. Under the reaction conditions of 80 °C and 1.0 MPa of H2, the yields of aniline for nitrobenzene hydrogenation over NiCo0.3/SBA-16 can reach more than 99% at 2.0 h. The enhanced catalytic performance can be ascribed to the formation of NiCo bimetallic nanostructures, where the synergistic effect between Ni and Co improves their catalytic activities for hydrogenation of nitroaromatics.

5.
Med Mycol ; 58(5): 690-697, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31711175

ABSTRACT

Bud emergence 46 (BEM46), a member of the α/ß hydrolase superfamily, has been reported to be essential for polarized growth in Neurospora crassa. However, the role of BEM46 in aspergillus fumigatus (A. fumigatus) remains unclear. In this study, we constructed an A. fumigatus strain expressing BEM46 fused with enhanced green fluorescent protein, and a Δbem46 mutant, to explore the localization and the role of growth of BEM46 in A. fumigatus, respectively. Confocal laser scanning microscopy revealed that BEM46 was dominantly expressed in the sites where hyphae germinated from conidia in A. fumigatus. When compared with the control strain, the Δbem46 mutant exhibited insignificant morphological changes but delayed germination. No significant changes were found regarding the radial growth of both strains in response to various antifungal agents. These results suggest that BEM46 plays an essential role in timely germination in A. fumigatus. From the observation of fluorescence localization, we infer that that BEM46 might be involved in polarized growth in A. fumigatus.


Subject(s)
Aspergillus fumigatus/growth & development , Aspergillus fumigatus/genetics , Hydrolases/genetics , Hydrolases/metabolism , Amino Acid Sequence , Aspergillus fumigatus/ultrastructure , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Genetic Complementation Test , Hyphae/genetics , Hyphae/growth & development , Hyphae/ultrastructure , Recombinant Fusion Proteins , Sequence Alignment , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/ultrastructure
6.
Neuroreport ; 30(10): 725-729, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31095112

ABSTRACT

There is currently no effective cure for trigeminal neuralgia (TN) - a relatively common disease that causes long-term pain in patients. Previous research has shown that ionotropic ATP signaling through excitatory and calcium-permeable P2X receptor channels plays a critical role in pathological pain generation and maintenance. In this paper, we review several hypotheses on the pathogenic mechanisms underlying TN. We further discuss pathways or agents that can target P2X expression in TN, thereby affecting pain induction and maintenance.


Subject(s)
Pain/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/drug effects , Trigeminal Ganglion/metabolism , Trigeminal Neuralgia/metabolism , Adenosine Triphosphate/metabolism , Humans , Receptors, Purinergic P2X/metabolism
7.
Neural Regen Res ; 13(11): 1961-1967, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30233070

ABSTRACT

Schwann cell transplantation is a promising method to promote neural repair, and can be used for peripheral nerve protection and myelination. Microcapsule technology largely mitigates immune rejection of transplanted cells. We previously showed that microencapsulated olfactory ensheathing cells can reduce neuropathic pain and we hypothesized that microencapsulated Schwann cells can also inhibit neuropathic pain. Rat Schwann cells were cultured by subculture and then microencapsulated and were tested using a rat chronic constriction injury (CCI) neuropathic pain model. CCI rats were treated with Schwann cells or microencapsulated Schwann cells and were compared with sham and CCI groups. Mechanical withdrawal threshold and thermal withdrawal latency were assessed preoperatively and at 1, 3, 5, 7, 9, 11 and 14 days postoperatively. The expression of P2X3 receptors in L4-5 dorsal root ganglia of the different groups was detected by double-label immunofluorescence on day 14 after surgery. Compared with the chronic constriction injury group, mechanical withdrawal threshold and thermal withdrawal latency were higher, but the expression of P2X3 receptors was remarkably decreased in rats treated with Schwann cells and microencapsulated Schwann cells, especially in the rats transplanted with microencapsulated Schwann cells. The above data show that microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in L4-5 dorsal root ganglia and neuropathic pain.

8.
Neurosci Lett ; 676: 51-57, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29608947

ABSTRACT

Transplantation of Schwann cells (SCs) can promote axonal regeneration and formation of the myelin sheath, reduce inflammation, and promote repair to the damaged nerve. Our previous studies have shown that transplantation of free or micro-encapsulated olfactory ensheathing cells can relieve neuropathic pain. There are no related reports regarding whether the transplantation of micro-encapsulated SCs can alleviate neuropathic pain mediated by P2X2/3 receptors. In the present study, we micro-encapsulated SCs in alginic acid and transplanted them into the region surrounding the injured sciatic nerve in the rat model of chronic constriction injury (CCI). The mechanical withdrawal threshold and thermal withdrawal latency were measured to assess changes in behavior 14 days after the surgery in CCI model rats. Ultrastructural changes in the injured sciatic nerve were assessed using transmission electron microscopy. Co-expression of P2X2/3 receptors with other markers in neurons in the L4-5 dorsal root ganglia (DRG) were assessed using double-label immunofluorescence 14 days after surgery. We determined P2X2/3 mRNA expression and protein level changes in the DRG using quantitative real-time polymerase change reaction technology and Western blotting analysis. We have investigated that the transplantation of micro-encapsulated SCs can alleviate pathological pain caused by P2X2/3 receptor stimulation and explored new methods for the prevention and treatment of neuropathic pain.


Subject(s)
Neuralgia/metabolism , Neuralgia/prevention & control , Receptors, Purinergic P2X2/metabolism , Receptors, Purinergic P2X3/metabolism , Schwann Cells/transplantation , Sciatic Nerve/injuries , Alginic Acid/pharmacology , Animals , Cells, Cultured , Disease Models, Animal , Drug Compounding/methods , Female , Ganglia, Spinal/metabolism , Male , Pain Threshold , Rats, Sprague-Dawley , Sciatic Nerve/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...