Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 33(22): 2686-8, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19015709

ABSTRACT

For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting.

2.
Opt Express ; 16(14): 10841-8, 2008 Jul 07.
Article in English | MEDLINE | ID: mdl-18607500

ABSTRACT

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb(2)O(5)/SiO(2)) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.


Subject(s)
Ceramics/chemistry , Lasers , Neodymium/chemistry , Niobium/chemistry , Oxides/chemistry , Silicon Dioxide/chemistry , Equipment Design , Oscillometry/methods
3.
Opt Lett ; 32(11): 1360-2, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17546121

ABSTRACT

The radially polarized mode is achieved from an active Yb fiber by utilizing of an intracavity converging axicon, where the axicon acts as a TM(01) mode selector based on not only its Brewster convex surface but also the distance between its vertex and plane output coupler. The polarization state of the annular laser beam is checked by using a home-made eight-hole aperture. Furthermore, an uncoated plane glass plate is inserted into the cavity, and the reflected beam points to the existence of an annular lasing mode inside the gain fiber. The issues for developing high-power radially polarized fiber lasers also are considered.

4.
Opt Lett ; 31(20): 2969-71, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17001369

ABSTRACT

For the first time to our knowledge, a radially polarized beam is generated in an Yb-doped multimode double-clad fiber laser by using an intracavity dual conical prism. Up to 6.2 mW of output power is obtained from a 2 m long gain fiber with 7.4% slope efficiency. This research opens a new window to obtaining a radially polarized beam directly from an active fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...