Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Phylogenet Evol ; 196: 108084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688440

ABSTRACT

The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.


Subject(s)
Orchidaceae , Phylogeny , Orchidaceae/genetics , Orchidaceae/classification , Forests , Genome, Plastid/genetics , Phylogeography , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Asia , DNA, Plant/genetics
2.
Heliyon ; 10(5): e26618, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455539

ABSTRACT

Background: Coinfection poses a persistent threat to global public health due to its severe effect on individual-level infection risk and disease outcome. Coinfection of SARS-CoV2 with one or more pathogens has been documented. Nevertheless, this virus co-infected with the Hantaan virus (HTNV) is rarely reported. Case summary: Here, we presented three cases of HTNV complicated with SARS-CoV2 infection. Not only the conditions including general clinical manifestations, immune and inflammation parameters fluctuation presented in the single infection of HTNV or SARS-CoV2 can be found, but also the unexpected manifestations have attracted our attention that presented as more symptoms of HTNV infection including exudative changes in both lungs and an amount of bilateral pleural effusion as well as bilateral kidney enlargement rather than typical viral pneumonia in SARS-CoV2 infection. Fortunately, the conditions of patients gradually return to normal which is beneficial from the antiviral treatment, hemodialysis, and various supportive therapies including anti-inflammation, liver and gastric mucosa protection. Conclusion: Unexpected manifestations of coinfection patients present herein may be associated with multiple factors including virus load, competition or antagonism among antigens, and the susceptibility of target cells to the various pathogens, even though the pathogenesis of HTNV and SARS-CoV2 remains to be elucidated. Given that these two viruses have posed a profound influence on the socioeconomic, healthcare system worldwide, and the threat of coinfection to public health, it is warranted for clinicians, public health authorities, and infectious disease researchers to have a high index of consideration for patients co-infected with HTNV and SARS-CoV2.

3.
Plant Divers ; 43(5): 379-389, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34816063

ABSTRACT

Five new species (Gastrochilus yei, Gastrochilus minimus, Luisia simaoensis, Taeniophyllum xizangense, Tuberolabium subulatum) and two newly recorded species (Cleisostoma tricornutum, Luisia inconspicua) of Vandeae (Orchidaceae) from China are described and illustrated. Gastrochilus yei is similar to G. affinis and G. nepalensis, but differs from them by having an epichile not lobed, the apex of the hypochile not bilobed, and a tine on the apex of the leaf. Gastrochilus minimus is similar to G. acinacifolius, but can be distinguished from the latter by having a flabellate epichile that is densely hirsute on the adaxial surface and an inconspicuous central cushion; in addition, the hypochile of G. minimus has a keel that extends to the apex of the epichile. Taeniophyllum xizangense is similar to T. stella and T. radiatum, but it is distinguished from them by having much bigger flowers, inflorescences densely covered with short-bristly hairs, papillae on the external surface of sepals, and bigger triangular-ovate viscidium. Luisia simaoensis is similar to L. magniflora and L. ramosii, but can be easily distinguished from them by having lateral sepals longer than dorsal sepals and petals, lip with irregular and waved margins, and lip with bilobed apex. Luisia inconspicua is moved from Gastrochilus to Luisia based on phylogenetic analyses of plastid matK sequence data. Tuberolabium subulatum is similar to T. carnosum, but it can be easily distinguished from the latter by having an inflorescence much shorter than the leaves, yellow sepals and petals, and many small papillae outside the lip lobes.

4.
Plant Divers ; 43(5): 420-425, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34816067

ABSTRACT

Gastrodia longistyla, a new species of Orchidaceae from Yunnan Province, China, is described and illustrated. It is morphologically similar to Gastrodia peichatieniana, but can be easily distinguished from the latter by having a rhombic epichile, long column (6.0-7.5 mm long), and a needle-shaped appendage (1.8-3.2 mm in length) at the base of the stigma. Identification key and colour photographs are provided. A preliminary risk-of-extinction assessment, according to the IUCN Red List Categories and Criteria, is given for the new species. The plastome of G. longistyla is 30464 bp in length with GC content approximately 24.8%, and the plastome does not contain some housekeeping genes, such as matK, rpl16, or all photosynthesis genes. In addition, the G. longistyla plastome lacks an IR region. This indicates that the plastome is in the last stage of degradation.

5.
Mol Phylogenet Evol ; 157: 107062, 2021 04.
Article in English | MEDLINE | ID: mdl-33387648

ABSTRACT

We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.


Subject(s)
Adaptation, Physiological , Ecosystem , Orchidaceae/classification , Phylogeny , Acclimatization , Africa , Asia , Biodiversity , Europe , Tibet , Time Factors
6.
Genome Biol Evol ; 12(6): 867-870, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32386305

ABSTRACT

Calypsoinae is a small subtribe in Orchidaceae (Epidendroideae) characterized by diverse trophic strategies and morphological characters. Calypsoinae includes 13 genera, four of which are leafless and mycoheterotrophic. Mycoheterotrophic species in the leafless genus Corallorhiza are well suited to studies of plastome evolution. However, the lack of plastome sequences for other genera in Calypsoinae limits the scope of comparative and phylogenetic analyses, in particular our understanding of plastome evolution. To understand plastid genome evolution in Calypsoinae, we newly sequenced the plastomes of 12 species in the subtribe, including representatives of three mycoheterotrophic genera as well as five autotrophic genera. We detected two parallel photosynthetic losses in Corallorhiza. Evolutionary analyses indicated that the transition to obligate mycoheterotrophy leads to the relaxation of selection in a highly gene-specific pattern.


Subject(s)
Biological Evolution , Genome, Plastid , Orchidaceae/genetics , Genome Size , Orchidaceae/metabolism , Photosynthesis , Selection, Genetic
7.
PhytoKeys ; 130: 183-203, 2019.
Article in English | MEDLINE | ID: mdl-31534406

ABSTRACT

Four new species of Gesneriaceae from Yunnan, southwest China, are described and illustrated. They are Petrocosmea rhombifolia, Petrocosmea tsaii, Didymocarpus brevipedunculatus, and Henckelia xinpingensis. Diagnostic characters between the new species and their morphologically close relatives are provided. Their distribution, ecology, phenology, and conservation status are also described.

8.
PhytoKeys ; 126: 1-12, 2019.
Article in English | MEDLINE | ID: mdl-31303811

ABSTRACT

Verdesmummenglaense (C. Chen & X. J. Cui) H. Ohashi & K. Ohashi is a rare species in the tribe Desmodieae (Fabaceae) from Southwest China. The morphological observation shows that the species has minute capitate stigma and ebracteolate calyces, which are entirely different from the funnel-shaped stigma and bracteolate calyces of the genus Verdesmum H. Ohashi & K. Ohashi, but are consistent with those of the genus Hylodesmum H. Ohashi & R. R. Mill. The generic placement of V.menglaense within Hylodesmum was further supported by molecular evidence. Therefore, this species should be returned to Hylodesmum as H.menglaense (C. Chen & X. J. Cui) H. Ohashi & R. R. Mill. A full description including floral characters, a colour plate and a distribution map are first provided here for this species. After excluding the solo representative in China, Verdesmum should be removed from the record in Flora of China.

9.
Mol Phylogenet Evol ; 139: 106540, 2019 10.
Article in English | MEDLINE | ID: mdl-31252068

ABSTRACT

To advance our knowledge of orchid relationships and timing of their relative divergence, we used 76 protein-coding genes from plastomes (ptCDS) and 38 protein-coding genes from mitochondrial genomes (mtCDS) of 74 orchids representing the five subfamilies and 18 tribes of Orchidaceae, to reconstruct the phylogeny and temporal evolution of the Orchidaceae. In our results, the backbone of orchid tree well supported with both datasets, but there are conflicts between these trees. The phylogenetic positions of two subfamilies (Vanilloideae and Cypripedioideae) are reversed in these two analyses. The phylogenetic positions of several tribes and subtribes, such as Epipogiinae, Gastrodieae, Nerviliinae, and Tropidieae, are well resolved in mtCDS tree. Thaieae have a different position among higher Epidendroideae, instead of sister to the higher Epidendroideae. Interrelationships of several recently radiated tribes within Epidendroideae, including Vandeae, Collabieae, Cymbidieae, Epidendreae, Podochileae, and Vandeae, have good support in the ptCDS tree, but most are not resolved in the mtCDS tree. Conflicts between the two datasets may be attributed to the different substitution rates in these two genomes and heterogeneity of substitution rate of plastome. Molecular dating indicated that the first three subfamilies, Apostasioideae, Cypripedioideae and Vanilloideae, diverged relatively quickly, and then there was a longer period before the last two subfamilies, Orchidoideae and Epidendroideae, began to radiate. Most mycoheterotrophic clades of Orchidaceae evolved in the last 30 million years with the exception of Gastrodieae.


Subject(s)
Genome, Mitochondrial , Genome, Plastid , Orchidaceae/classification , Evolution, Molecular , Orchidaceae/genetics , Phylogeny
10.
PhytoKeys ; (110): 81-89, 2018.
Article in English | MEDLINE | ID: mdl-30429660

ABSTRACT

Hiptagepauciflora Y.H. Tan & Bin Yang and Hiptageferruginea Y.H. Tan & Bin Yang, two new species of Malpighiaceae from Yunnan, South-western China are here described and illustrated. Morphologically, H.pauciflora Y.H. Tan & Bin Yang is similar to H.benghalensis (L.) Kurz and H.multiflora F.N. Wei; H.ferruginea Y.H. Tan & Bin Yang is similar to H.calcicola Sirirugsa. The major differences amongst these species are outlined and discussed. A diagnostic key to the two new species of Hiptage and their closely related species is provided.

11.
PhytoKeys ; (103): 13-18, 2018.
Article in English | MEDLINE | ID: mdl-29997445

ABSTRACT

Begonia medogensis JianW.Li, Y.H.Tan & X.H.Jin, a new species of Begoniaceae, is described and illustrated by colour photographs. Begonia medogensis is distributed in western China and northern Myanmar. It has erect stems, is tuberless, has many triangular to lanceolate leaves, base slightly asymmetric, margins remotely and irregularly denticulate; staminate flowers have 4 perianth segments, with outer 2 segments broadly ovate, inner 2 spathulate; pistillate flowers have 5 perianth segments, unequal, outer 4 broadly ovate, inner 1 spathulate. The new species is assigned to section Platycentrum and can easily be distinguished from the other species in the section.

12.
BMC Plant Biol ; 17(1): 222, 2017 Nov 25.
Article in English | MEDLINE | ID: mdl-29178835

ABSTRACT

BACKGROUND: Subtribe Orchidinae (Orchidaceae, Orchidoideae) are a nearly cosmopolitan taxon of terrestrial orchids, comprising about 1800 species in 47 to 60 genera. Although much progress has been made in recent years of phylogenetics of Orchidinae, considerable problems remain to be addressed. Based on molecular phylogenetics, we attempt to illustrate the phylogenetic relationships and discuss generic delimitation within Orchidinae. Seven DNA markers (five plastid and two nuclear), a broad sampling of Orchidinae (400 species in 52 genera) and three methods of phylogenetic analysis (maximum likelihood, maximum parsimony and Bayesian inference) were used. RESULTS: Orchidinae s.l. are monophyletic. Satyrium is sister to the rest of Orchidinae s.l. Brachycorythis and Schizochilus are successive sister to Asian-European Orchidinae s.s. Sirindhornia and Shizhenia are successive sister to clade formed by Tsaiorchis-Hemipilia-Ponerorchis alliance. Stenoglottis is sister to the Habenaria-Herminium-Peristylus alliance. Habenaria, currently the largest genus in Orchidinae, is polyphyletic and split into two distant clades: one Asian-Australian and the other African-American-Asian. Diplomeris is sister to Herminium s.l. plus Asian-Australian Habenaria. CONCLUSIONS: We propose to recognize five genera in the Ponerorchis alliance: Hemipilia, Ponerorchis s.l., Sirindhornia, Shizhenia and Tsaiorchis. Splitting Habenaria into two genera based on morphological characters and geographical distribution may be the least disruptive approach, and it is reasonable to keep Satyrium in Orchidinae.


Subject(s)
Orchidaceae/classification , DNA, Plant , Genetic Markers , Orchidaceae/genetics , Phylogeny
13.
PLoS One ; 12(10): e0186545, 2017.
Article in English | MEDLINE | ID: mdl-29045488

ABSTRACT

An investigation of a questionable species of the genus Alseodaphne led to the discovery of a new genus Alseodaphnopsis H. W. Li & J. Li, gen. nov., separated from Alseodaphne Nees, and a new species Alseodaphnopsis ximengensis H. W. Li & J. Li, sp. nov., endemic to Yunnan province, China. This new species is characterized by having big, axillary, paniculate inflorescences, as well as large, subglobose fruits. Based on DNA sequence data from two gene regions (nuclear ribosomal ITS and LEAFY intron II), we investigate its phylogenetic position within the Persea group. Phylogenies using maximum parsimony (MP) and Bayesian inference (BI) support the recognition of Alseodaphnopsis as a distinct genus but do not resolve well its relationship within the Persea group. The new genus is circumscribed, eight new combinations for its species are made, and a description and illustration of the new species are provided.


Subject(s)
Lauraceae/anatomy & histology , Lauraceae/genetics , Base Sequence , Bayes Theorem , Databases, Genetic , Inflorescence/anatomy & histology , Introns/genetics , Organ Size , Phylogeny
14.
Orthop Surg ; 9(3): 296-303, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28960817

ABSTRACT

OBJECTIVE: To study the corrosion behavior of magnesium alloy surface treated with micro-arc oxidation and hydrothermal deposition in living animals. METHODS: A magnesium oxide (MgO) layer was prepared on Mg alloy using micro-arc oxidation technology, and then a composite coating composed of magnesium hydroxide, hydroxyapatite, and MgO was coated on the MgO layer using the hydrothermal deposition method for 2 h and 24 h. Male 3-month-old white New Zealand rabbits (n = 48) weighting 2200-2300 g, were divided into four groups randomly. The prepared Mg alloy samples with composite coatings were implanted into the femoral medullary cavity of rabbits. For the Mg group, bare Mg samples without any treatment were implanted; for the MgO group, bare Mg samples undergoing MAO treatment were implanted; for the HT2h group, samples of the MgO group undergoing hydrothermal treatment (HT) for 2 h were implanted; and for the HT24h group, samples of group MgO undergoing HT for 24 h were implanted. Then the in vivo corrosion behaviors of implants were evaluated by X-ray observation, micro-CT analysis and serum Mg2+ examination. RESULTS: The X-ray showed that samples implanted in animals were decreased as time went by. The micro-CT showed that on the fourth week, the residual volume percentages (RVP) of samples of the Mg, MgO, HT2h, and HT24h groups were 72.81% ± 2.10%, 71.68% ± 1.49%, 81.14% ± 1.54%, and 82.04% ± 0.89%, respectively; on the eighth week, the RVP of four groups were 29.45% ± 1.06%, 41.82% ± 1.13%, 53.92% ± 0.37%, and 62.53% ± 2.06%, respectively; while on the 12th week, RVP were 8.45% ± 0.49%, 9.97% ± 0.75%, 37.09% ± 0.89%, 46.71% ± 1.87%. The RVP of the HT2h group and the HT24h group were higher than for the Mg group and the MgO group for all three time points (P < 0.05); the RVP for HT24h was higher than for HT2h at 8 and 12 weeks, and the differences were significant, indicating that the degradation of Mg alloy slowed down after composite coating. In addition, the composite-coated Mg alloy by 24-h hydrothermal treatment exhibited a slower degradation than that treated by 2 h. Serum Mg2+ concentration results showed that on the second week, the Mg2+ concentrations of the Mg, MgO, HT2h, and HT24h groups were 2.24 ± 0.10 mmol/L, 2.12 ± 0.07 mmol/L, 2.06 ± 0.11 mmol/L, and 2.15 ± 0.12 mmol/L, respectively. On the fourth week, these concentrations were 1.99 ± 0.33 mmol/L, 2.18 ± 0.06 mmol/L, 2.17 ± 0.09 mmol/L, and 2.13 ± 0.14 mmol/L, respectively. On the eighth week, the concentrations were 2.22 ± 0.09 mmol/L, 2.20 ± 0.17 mmol/L, 2.06 ± 0.11 mmol/L, and 2.14 ± 0.07 mmol/L, respectively. On the 12th week, the concentrations were 2.18 ± 0.04 mmol/L, 2.20 ± 0.08 mmol/L, 2.09 ± 0.02 mmol/L, and 2.16 ± 0.11 mmol/L. CONCLUSION: The combination of micro-arc oxidation and hydrothermal deposition can greatly improve the anti-corrosion behavior of Mg alloy, and Mg alloy coated with this composite coating is a promising biomaterial with a satisfactory degradation rate.


Subject(s)
Coated Materials, Biocompatible/chemistry , Magnesium/chemistry , Prostheses and Implants , Alloys/chemistry , Animals , Corrosion , Durapatite/chemistry , Magnesium Hydroxide/chemistry , Magnesium Oxide/chemistry , Male , Oxidation-Reduction , Rabbits , Surface Properties , X-Ray Microtomography
15.
Genome Biol Evol ; 8(7): 2164-75, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27412609

ABSTRACT

The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy.


Subject(s)
Genome, Plastid , Heterotrophic Processes/genetics , Orchidaceae/genetics , Selection, Genetic , Evolution, Molecular , NADPH Dehydrogenase/genetics , Orchidaceae/metabolism , Photosynthesis/genetics , Plant Proteins/genetics
16.
Cladistics ; 32(2): 198-210, 2016 Apr.
Article in English | MEDLINE | ID: mdl-34736301

ABSTRACT

The first comprehensive phylogenetic study of the orchid genus Herminium and its allies is presented, based on seven molecular markers (nuclear internal transcribed spacer, Xdh, chloroplast matK, psaB, psbA-trnH, rbcL and trnL-F) and 37 morphological characters. Phylogenetic analyses indicate that Herminium as currently delimited is paraphyletic and that several genera are deeply nested within it. Based on parsimony analysis of total evidence, the generic circumscription of Herminium is expanded to include Androcorys, Bhutanthera, Frigidorchis and Porolabium. Apomorphic and plesiomorphic character states are identified for various clades recovered in this study. A few species currently wrongly assigned to Peristylus and Platanthera are here included in Herminium. All necessary new combinations are made.

17.
Trials ; 16: 131, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25873092

ABSTRACT

BACKGROUND: Previous studies have shown that electroacupuncture (EA) has a significant effect on acute pain, but it has not solved the clinical problem of the chronification of acute pain. Diffuse noxious inhibitory controls (DNIC) function as a reliable indicator to predict the risk of chronic pain events. DNIC function in knee osteoarthritis (KOA) patients has been demonstrated to gradually decrease during the development of chronic pain. The purpose of this study is to conduct a randomized, controlled clinical trial to determine if EA can repair impaired DNIC function and thus prevent chronification of the acute pain of KOA. METHODS/DESIGN: This is a multicenter, single blind, randomized, controlled, three-arm, large-scale clinical trial. A total of 450 KOA patients will be randomly assigned to three groups. The strong EA group will receive EA with high-intensity current (2 mA < current < 5 mA) at the ipsilateral 'Neixiyan' (EX-LE5), 'Dubi'(ST35), 'Liangqiu'(ST34) and 'Xuehai' (SP10). The weak EA group will receive EA with low-intensity current (0 mA < current < 0.5 mA) on the same acupoints. The sham EA group will receive EA with low-intensity current (0 mA < current < 0.5 mA) with fine needles inserted superficially into the sites 2 cm lateral to the above acupoints. The patients will be treated with EA once a day, 30 minutes per session, in 5 sessions per week, for 2 weeks. In order to determine the best stage of KOA for effective EA intervention, patients within the treatment groups also will be divided into four stages. The primary outcomes are Visual Analog Scale (VAS), DNIC function and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Clinical assessments will be evaluated at baseline (before treatment) and after 5 to 10 sessions of treatment. DISCUSSION: This trial will be helpful in identifying whether strong EA is more effective than weak EA in reversing chronification of acute pain through repairing the impaired DNIC function and in screening for the best stage of KOA for effective EA intervention. TRIAL REGISTRATION: Chinese Clinical Trial Registry Number: ChiCTR-ICR-14005411. The date of registration is 31 October 2014.


Subject(s)
Acute Pain/therapy , Clinical Protocols , Electroacupuncture , Osteoarthritis, Knee/therapy , Humans , Outcome Assessment, Health Care , Sample Size , Single-Blind Method
18.
Mol Phylogenet Evol ; 77: 41-53, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24747003

ABSTRACT

The subtribe Orchidinae, distributed predominantly in Eastern Asia and the Mediterranean, presents some of the most intricate taxonomic problems in the family Orchidaceae with respect to generic delimitation. Based on three DNA markers (plastid matK, rbcL, and nuclear ITS), morphological characters, and a broad sampling of Orchidinae and selected Habenariinae mainly from Asia (a total of 153 accessions of 145 species in 31 genera), generic delimitation and phylogenetic relationships within the subtribe Orchidinae and Habenariinae from Asia were assessed. Orchidinae and Asian Habenariinae are monophyletic, and Orchidinae is divided into distinct superclades. Many genera, such as Amitostigma, Habenaria, Hemipilia, Herminium, Platanthera, Peristylus and Ponerorchis, are not monophyletic. Habenaria is subdivided into two distantly related groups, while Platanthera is subdivided into three even more disparate groups. Many previously undetected phylogenetic relationships, such as clades formed by the Amitostigma-Neottianthe-Ponerorchis complex, Platanthera latilabris group, Ponerorchis chrysea, Sirindhornia, and Tsaiorchis, are well supported by both molecular and morphological evidence. We propose to combine Hemipiliopsis with Hemipilia, Amitostigma and Neottianthe with Ponerorchis, Smithorchis with Platanthera, and Aceratorchis and Neolindleya with Galearis, and to establish a new genus to accommodate Ponerorchis chrysea. Tsaiorchis and Sirindhornia are two distinctive genera supported by both molecular data and morphological characters. A new genus, Hsenhsua, and 41 new combinations are proposed based on these findings.


Subject(s)
Orchidaceae/genetics , Phylogeny , Plastids/genetics , Cell Nucleus/genetics , Genetic Markers , Orchidaceae/anatomy & histology , Orchidaceae/classification , Plant Proteins/genetics
19.
PLoS One ; 9(1): e87625, 2014.
Article in English | MEDLINE | ID: mdl-24498156

ABSTRACT

Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial.


Subject(s)
Chloroplast Proteins/genetics , Evolution, Molecular , Genes, Chloroplast/physiology , Orchidaceae/genetics , Phylogeny , Orchidaceae/classification
20.
Mol Phylogenet Evol ; 69(3): 950-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23811435

ABSTRACT

Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae. Based on five DNA markers and a broad sampling of Dendrobium and its relatives from mainland Asia (109 species), our results indicate that mainland Asia Dendrobium is divided into eight clades (with two unplaced species) that form polytomies along the spine of the cladogram. Both Dendrobium and Epigeneium are well supported as monophyletic, whereas sect. Dendrobium, sect. Densiflora, sect. Breviflores, sect. Holochrysa, are paraphyletic/polyphyletic. Many ignored phylogenetic relationships, such as the one of major clades formed by D. jenkinsii and D. lindleyi (two members of sect. Densiflora), the Aphyllum group, the Devonianum group, the Catenatum group, the Crepidatum group, and the Dendrobium moniliforme complex are well supported by both molecular and morphological evidence. Based on our data, we propose to broaden sect. Dendrobium to include sect. Stuposa, sect. Breviflores, and sect. Holochrysa and to establish a new section to accommodate D. jenkinsii and D. lindleyi. Our results indicated that it is preferable to use a broad generic concept of Dendrobium and to pursue an improved infrageneric classification at sectional level, taking into account both morphology and current molecular findings.


Subject(s)
Dendrobium/classification , Phylogeny , Asia , Bayes Theorem , Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , Dendrobium/anatomy & histology , Dendrobium/genetics , Genetic Markers , Models, Genetic , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...